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Abstract

Increased sensitivity of forensic DNA profiling over the last decade has led to increased stochasticity in the

resulting profiles, causing difficulties for interpretation that were acknowledged by the Caddy Report [Caddy

et al., 2008]. These difficulties were largely overcome with the adoption of statistical models allowing for

dropout and dropin, but interpretation issues remain, several of which are tackled in this thesis. One such

issue concerns the choice of allele frequency databases when the ethnic background of the true source of the

crime scene DNA is unknown. I propose a heuristic for choosing a single database and adjusting the likelihood

ratio calculations to allow for the possibility that a different database may be more appropriate. Another

issue in general, and specifically for the database choice heuristic, is the choice of an appropriate value for the

population genetics parameter FST to account for distant relatedness between the alleged contributor and

an alternative source of the DNA. I present empirical estimates of FST in worldwide populations, relative to

the continental-scale reference databases that are used for UK forensic DNA profiles. In the last few years

many software packages for the evaluation of low-template DNA samples have emerged, including likeLTD

originally developed by my supervisor Prof Balding but greatly improved and reprogrammed by myself as

part of my PhD work. There remains little consensus on how to validate these software packages. I present

a method of validation based on the use of multiple-replicate crime stain profiles. It relies on the intuition

that sufficient replicates of even very noisy DNA profiling runs eventually generate the same information as

a single high-quality replicate. I show that likeLTD performs well when assessed by this approach. Finally, I

present a new statistical model that extends likeLTD to incorporate the peak height information in a crime

scene profile. I show results based on simulation and laboratory trials verifying the good performance of the

new model in improved discrimination between true and false hypotheses.
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Chapter 1

Introduction to forensic low-template
DNA analysis

Much of the information in this chapter, specifically regarding low-template DNA, has been published in

Steele and Balding [2014b], see Appendix B, and Balding and Steele [2015].

1.1 History of low-template DNA analysis

DNA profiling was first developed by Prof. Sir Alec Jeffreys in 1984 based on variable number tandem

repeats, and was quickly used in the courts to convict the killer of Lynda Mann and Dawn Ashworth in 1988

through matches to semen samples found on the victims’ bodies. DNA analysis became routine in court,

and moved to short tandem repeats, but some high profile cases highlighted some deficiencies in thinking

about DNA weight-of-evidence (WoE). An early example was the case of Raymond Easton, who was found

to match a burglary crime scene profile at six loci that was obtained 200 miles from his home through a

database search. Easton had severe tremors as a result of Parkinson’s disease, and was unable to perform

simple tasks. Despite this exculpatory evidence, Easton was charged with burglary based solely on the DNA

match. He was later exonerated on the basis of a 10 locus profile which did not match the crime scene profile.

Over time the sensitivity of DNA profiling increased through various means, so that usable profiles

could be obtained from very small amounts of DNA, termed low-template DNA (LTDNA) evidence. In a

similar vein to DNA evidence, a number of high profile cases cast doubt on some LTDNA analysis practices.

Sean Hoey was arrested and accused of murder in 2003, five years after the 1998 Omagh bombing. During

his acquittal in 2007, it was claimed that LTDNA methods were unreliable and that contamination was a

serious issue for interpretation [NICC, 2007]. These claims lead to the temporary suspension of LTDNA

sample analysis. As a direct result of the Hoey acquittal, a report was commissioned by the UK Forensic
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Science Regulator [Caddy et al., 2008] which concluded that LTDNA methods are “fit for purpose”, paving

the way for analysis of LTDNA samples to resume. However, the report highlighted that questions remained

over how best to analyse and interpret LTDNA results, and recommended that a consensus should be agreed

upon for LTDNA interpretation. A further ruling in a separate case clarified that cases with more than

100-200 picograms (pg) of DNA, approximately equivalent to between 16 and 34 cells, should no longer be

challenged on the grounds of being low-template [EWCA, 2009], however, this left open questions regarding

the analysis of DNA samples that have less than 100-200 pg DNA. This was addressed in EWCA [2010], in

which the court ruled that despite the increased incidence of stochastic effects and the potentially debatable

probative value of DNA evidence at less than 100-200 pg of DNA, LTDNA evidence at such low levels

should still be admissible. Interpretation challenges still remain, as demonstrated in the trial of Raffaele

Sollecito and Amanda Knox, in which allelic calls from a DNA profile were altered between appeals [Balding,

2013], and further questions of contamination were raised. See Naughton and Tan [2011] for a history of

some important cases regarding DNA evidence, and Bentley and Lownds [2011] for some of the case history

surrounding LTDNA evidence.

Forensic evidence can generally be partitioned into a four level hierarchy of propositions:

• Offence level i.e. has an offence been committed?

• Activity level i.e. what activity has taken place?

• Source level i.e. who or what is the source of an item of evidence?

• Sub-source level e.g. who contributes to a DNA sample?

It is possible to have an item of evidence for which being a sub-source contributor does not imply that you

are the source of the item of evidence e.g. a blood stain from a murder victim may contain DNA from the

perpetrator; the victim is the source of the blood stain, but the perpetrator is a sub-source contributor to

the DNA within the blood stain. Note that LTDNA evidence introduces difficulties to interpretation at an

activity level, such as secondary/indirect transfer, that may be important to the WoE against a suspect, but

that are not considered in this thesis, as I consider DNA evidence only at a source or sub-source level.

As the sensitivity of DNA typing technology increased, the WoE to be presented in court moved

away from the certainty of full match, to the WoE given some partial matching to a suspect. With such

potential partial matches, the method of calculating the WoE of a particular profile moved from the rudi-

mentary probabilities of inclusion [Buckleton and Curran, 2008], through likelihood ratios (LRs) based on

presence/absence of alleles [Evett and Weir, 1998, Evett et al., 1991, Gill et al., 2000, 2008, 2012, Balding and
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Buckleton, 2009, Balding, 2013] in an electropherogram (epg), to LRs based on continuous data [Graversen

and Lauritzen, 2014, Cowell et al., 2015, Bleka et al., 2016, Puch-Solis et al., 2013, Bright et al., 2013c, Perlin

et al., 2011], usually incorporating the peak heights (PHs) of the epg. As the models proposed to calculate

the WoE have become more sophisticated, so too have the software packages that perform the calculations.

1.2 Goals

The case history of DNA and particularly LTDNA evidence clearly demonstrates challenges in the inter-

pretation of such evidence in court. This thesis will address some of these issues, and provide evidence to

inform the consensus for LTDNA analysis recommended by the Caddy report.

A new PH model will be presented in Chapter 5. While this PH model utilises more of the information

available in an epg than previous models, perhaps the most important benefit of a PH model in relation to

the challenges previously described is the minimal input by the forensic scientist. Presence/absence models

require manual designation of peaks as either allelic or non-allelic, which can be challenging when, for

example, a potential minor allelic peak is in the same position as a major allelic peak. A PH model removes

this need, as the program determines the most likely genotypes automatically, through maximisation or

integration of model parameters. This would have removed some of the difficulties seen in the Knox/Sollecito

case, and allowed the court to focus on more important questions than the designation of peaks.

As the sophistication of WoE models has increased, methods to verify the validity of a model, or

an implementation of a model, have not kept pace. Chapter 2 will present a method for validating forensic

WoE software that depends on multi-replicate epgs, which will be used to validate a presence/absence model.

Further, in Chapter 7, this method will be used to model a PH model. Both of these models are available in

the Comprehensive R Archive Network (CRAN) package, likeLTD. Further validation of the PH model will

be presented in Chapter 6, which will largely present results of the PH model on laboratory-generated epgs.

A common theme throughout the case challenges described earlier was the issue of contamination.

While many of the challenges concerned contamination of evidence samples with DNA from a queried con-

tributor, contamination by individuals not of interest can also be problematic leading to complex samples

and challenging interpretation. Chapter 7 will present strategies that are available when employing a PH

model to reduce this complexity, either through assuming a major contaminant as a known contributor, or

assuming a minor contaminant as environmental contamination.

Population genetics phenomena, such as population substructure, that have an important effect on

the WoE will be investigated in Chapters 3 and 4. This will provide estimates of the population genetics
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parameter, FST , that are more widespread and more exact than has previously been available. This work will

tie in to the use of population databases when calculating the WoE, the effects of mis-assigning a database,

and possibilities for reducing computational complexity through guidance on the what database to use for a

given calculation.

1.3 Forensic DNA typing

The most commonly used marker type in forensic DNA profiling is the short tandem repeat (STR), or mi-

crosatellite. STRs are sections of the genome in which a short motif is repeated multiple times; forensic

markers commonly have repeat units of four base pairs (a notable exception is the D22 locus included in the

NGMSelect R© profiling kit, which instead has repeat units of three base pairs) that vary from around three to

50 or more repetitions. Partial repeats are possible, but are usually less common than full repeats. An STR

with five repeat units (e.g. [ACGA]5) is defined as allele 5, while an allele with five repeat units, and a partial

repeat of three base pairs (e.g. [ACGA]2ACG[ACGA]3) is defined as allele 5.3. The allele definition is deter-

mined by the length of the allele in base pairs, so both ACGA[ACG]5ACGA and [ACGA]2ACG[ACGA]3 are

allele 5.3, despite the difference in internal structure of the two sequences. Smaller differences between repeat

structures of the same allele, such as point mutations, are also possible without changing the allele designa-

tion. These variants within alleles cannot be detected by current STR typing using capillary electrophoresis,

however, full sequencing of STRs is currently in development, which will allow for discrimination between

these within-allele variants. Repeat sections of STRs are flanked by non-repeat sections, the flanking regions,

that are targeted by primers for amplification by polymerase chain reaction (PCR). Thus, the total length of

an amplified STR in base pairs is the length of both flanking regions in addition to the length of the repeat

section. STR kits that are less susceptible to some PCR and/or case circumstance artefacts (see Section 1.7)

have been developed by reducing the size of these flanking regions.

In current practice, after DNA has been extracted from a sample, PCR is used to amplify the STRs

of interest. The primers used in PCR are fluorescently tagged, and are incorporated into the amplified

product during each elongation step. After PCR, the amplified product is drawn through a capillary by

applying an electric field across it (capillary electrophoresis); DNA is negatively charged at neutral pH due

to the phosphate groups in the sugar-phosphate backbone, so travels towards the positive end of the dipole.

At a certain point, a laser is shone through a window in the capillary, which causes the fluorescent tag

incorporated into each primer to fluoresce as PCR product passes the laser, which is detected by a charge-

coupled device (CCD) camera. CCD cameras are capable of detecting multiple wavelengths of light at the
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same time. Longer DNA molecules travel more slowly through the capillary due to increased mechanical

obstruction by the media in the capillary, leading to size separation of the PCR product over time. Multiple

loci can be interrogated in a single reaction (multiplexing) by:

1. size separating loci e.g. locus A spans 100-150 base pairs (bp) while locus B spans 200-250 bp.

2. wavelength separating loci e.g. two loci both spanning 100-150 bp, but locus A is tagged with a dye

that fluoresces at 494 nm while locus B is tagged with a dye that fluoresces at 705 nm.

See [Butler et al., 2004] for a full review of forensic DNA typing using capillary electrophoresis.

1.4 Forensic DNA evidence

A crime stain and a sample from one or more reference individuals are STR typed, generating a crime stain

profile (CSP) and one or more reference profiles. The capillary electrophoresis generates an epg (Figure 1.1),

in which each panel shows the loci tagged with the different dyes, blue, green, yellow (displayed as black

here) and red from top to bottom, the y-axis of each panel shows relative fluorescence units (RFU), a proxy

for the amount of DNA in each peak, and the x-axis shows time in seconds, a proxy for the length of alleles

in base pairs. Grey boxes above each panel indicate the size range of each locus in that panel, while vertical

grey bars indicate the size of each common allele within that locus. Red vertical bars indicate the peaks from

a fourth unshown panel, the allelic ladder, that is used to correctly size each allele. Coloured boxes below

prominent peaks show the allelic designation of each peak that has been automatically called as allelic.

In Figure 1.1 the sex determining locus, amelogenin (AMEL), shows a large X peak and a small Y

peak, suggesting a mixture containing a large amount of female-origin DNA and a small amount of male-

origin DNA. The epg suggests a minimum of two contributors due to a maximum of four alleles being

observed at any locus, with many loci displaying peak heights that suggest a major/minor mixture e.g.

vWA and D16. A plausible scenario for generating such an epg would be a vaginal swab from a rape victim,

although the case circumstances of the epg shown in Figure 1.1 are unknown.

1.5 Likelihood ratio (LR)

The court is interested in whether or not a given individual is guilty of a crime. However, a forensic DNA

scientist cannot directly answer this question for a number of reasons:
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The “ultimate issue” rule: In the UK, the duty of the jury is to determine the guilt or innocence of

a suspect. Expert witnesses are barred from commenting on this question to avoid them unduly

influencing the jury. Additionally, non-DNA evidence may exist that has a direct bearing on the

possible guilt of the suspect, such as an alibi, eye-witness account, CCTV footage, or general case

circumstances. The expert witness generally has no experience in evaluating this qualitative non-

scientific evidence, so cannot incorporate this non-DNA evidence with the DNA evidence to ascertain

an overall probability of guilt.

Source level evidence: DNA can often only determine if someone has contributed to a DNA sample; this

may not imply whether or not they committed a crime. DNA does not always suffice to place a suspect

at the scene of a crime, if secondary DNA transfer is believed to have occurred [Meakin and Jamieson,

2013].

The DNA expert is charged with evaluating the evidence for whether a given individual, termed the

queried individual (Q), is a contributor to a CSP. Q is often the alleged culprit of a crime, however, in some

cases Q may be some other individual, such as the victim of a crime. Q is always the individual who has

the greatest bearing on whether or not the suspect is guilty of the crime e.g. Q may be the victim of a rape

if a penile swab has been taken from the alleged culprit as whether or not the victim’s DNA is represented

in the DNA from the penile swab is most relevant to whether or not the alleged culprit is guilty or not.

Once an appropriate Q has been determined, the evidence evaluation can be formulated as a likeli-

hood ratio (LR) [Evett and Weir, 1998, Evett et al., 1991]:

LR =
Pr(E|Hp)

Pr(E|Hd)
, (1.1)

where E is the CSP evidence, Hp is the prosecution hypothesis which asserts that Q is represented in the

CSP and Hd is the defence hypothesis which asserts that anyone other than Q, who will be termed X,

is represented in the CSP. Typically the specification of Hp is relatively simple, as the prosecution must

propose a particular set of events by which the suspect is guilty of the crime in question. The defence has

no such obligation, so specification of Hd is more problematic. Hp does not need to be a special case of Hd,

where Q has replaced X i.e. Hp can posit two contributors while Hd posits three contributors. However, all

hypotheses pairs presented throughout this thesis will replace X with Q under Hp. Gill and Haned [2013]

suggest a framework for determining appropriate hypothesis pairs in complex scenarios.
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For artificial CSPs, as presented throughout this thesis, H1 and H2 would be more appropriate

designations as there is no prosecution or defence hypothesis in an artificial setting, however, Hp and Hd

will be used throughout for convenience. LRs will be presented throughout as log10(LR), which gives the

weight-of-evidence (WoE) in units of bans, which was first proposed by Alan Turing in 1940 during his code

breaking work in WWII [Good, 1979].

Each separate likelihood, Lp and Ld, at a single locus is given by the following equation, adapted

from Curran et al. [2005]:

n∑
j=1

[ ∏
r∈R

Pr(r|K,Uj , φ)

]
Pr(Uj), (1.2)

where R is the set of replicates that make up a CSP, K are the alleles of any profiled individuals, which

will always include Q under Hp, Uj are the jth set of hypothesised unknown contributor alleles that can

explain the CSP, which will always include X under Hd, n is the number of unknown genotype allocations,

and φ are any model parameters. This notation is often simplified to
∑n
j=1 Pr(E|Gj)Pr(Gj |K), where Gj

is {K,Uj}, and the product over replicates is implicit in E.

1.6 Good-template DNA

Here, (1.2) will be built up from first principles using the LR framework. In the simplest possible setting of a

good-template CSP with a single observed peak, A (C=A), assuming a single contributor with no population

genetics effects the LR for a Q with genotype A,A (GQ=AA) is:

LR =
1

p2A
, (1.3)

where pA is the population allele probability for allele A. Similarly, if C=AB and GQ=AB, then LR =

1/2pApB . The numerator is 1 if Q matches the CSP, and 0 otherwise, because P (E|G = GQ) is 1 if G = GQ
and 0 if G 6= GQ, so for GQ=AC, LR = 0/2pApC = 0. The denominator is the probability of observing a

genotype matching the CSP alleles in the given population assuming Hardy-Weinberg equilibrium.

Now consider a two-contributor CSP where both individuals are good-template, C=ABC, and

GQ=AB. If the second contributor is unprofiled (U), then the LR is:

LR =
2pApC + 2pBpC + p2C

12(p2ApBpC + pAp2BpC + pApBp2C)
=

2pA + 2pB + pC
12pApB(pA + pB + pC)

, (1.4)
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where each term under the unsimplified Hd comprises both a homozygote/heterozygote mix and a het-

erozygote/heterozygote mix with both orderings of the individuals e.g. the first Hd term has genotype

combinations {AA,BC}, {BC,AA}, {AB,AC} and {AC,AB}. Under Hp only unknown genotypes are given

a population probability, as any known profile is not being drawn from the population. Any genotype that

does not explain the CSP is not included e.g. GU=BB under Hp.

Because peak heights are a proxy for the dose of DNA, they can often be used as a guide to the allele

count of a peak. This information can reduce the number of reasonable combinations by suggesting which

peaks come from which contributors, and which are homozygous/heterozygous e.g. for D10 from Figure 1.1

the peak heights suggest the most parsimonious genotype is 13,15 for the minor contributor and 14,14 for

the major contributor, so if GQ=13,15, the LR would be:

LR =
p214

4p13p214p15
=

1

4p13p15
, (1.5)

where Hd includes both orderings of genotypes 13,15 and 14,14. Compared to (1.4) the number of genotypes

that are considered has been reduced from three to one under Hp, and from 12 to two under Hd, by using

peak heights to inform plausible genotype combinations. Note that this simplification of the LR by utilising

peak height information may be possible for simple good-template CSPs, but may not possible for low-

template CSPs as high peak height variability at low DNA levels may lead to incorrect inference of allele

counts.

Returning to the scenario that generated (1.4), C=ABC, GQ=AB, but assuming that instead of an

unprofiled second contributor, we have a profiled individual, GK=AC, the LR becomes:

LR =
1

2pApB + p2B + 2pBpC
, (1.6)

where we can see once again that only genotypes that are able to explain the CSP fully are considered.

1.7 Low template DNA

Over the last decade or so the sensitivity of STR typing has improved, leading to the typing of samples

comprised of smaller and smaller amounts of DNA; it is now possible to imperfectly type samples that

include less DNA than is found in a single cell, approximately 6 pg DNA.

Multiple routes to increased sensitivity for a low-template sample are available:
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PCR cycles: Increase the number of PCR cycles.

Input concentration: Increase the concentration of PCR product introduced into capillary electrophoresis.

Voltage: Increase the voltage across the capillary, so more of the PCR product is drawn into the capillary.

Injection time: Increase the injection time, increasing the amount of DNA drawn into the capillary.

Purification: Purify the PCR products, which removes unused primers and non-target DNA, so that a

greater proportion of the DNA in the sample is relevant.

The low levels of DNA that can now be analysed, and the methods used to increase sensitivity, lead

to increased stochastic effects in the profiles that are generated, so the interpretation of LTDNA profiles

can be more difficult than described in Section 1.6. These difficulties were highlighted by the Caddy Report

[Caddy et al., 2008], after the acquittal of Sean Hoey [NICC, 2007]. Stochastic effects introduced into

LTDNA profiles that are generally not problematic at good-template are:

Heterozygote imbalance: For good-template samples the peak height for the two peaks of a heterozygous

individual are expected to be approximately equal. This expectation is no longer reasonable for low-

template samples due to the stochastic nature of PCR, and sampling variance during pipetting. For

example, if five cells worth of DNA enter PCR, and two copies of one allele but all five copies of the

other happen to be amplified in the first cycle, then there are four and ten copies of each available

for amplification in the second cycle, compounding the initial stochastic imbalance in the first cycle

amplification. Extreme heterozygote imbalance can lead to one of the alleles having a peak height below

the detection threshold of the genotyping technology, termed dropout. The possibility of dropout means

that during computation of the LR it may no longer be sufficient to only propose genotypes that consist

of alleles that were observed in the CSP.

Dropin: Dropin is low-level environmental contamination of an allele from DNA at the crime-scene or in

the laboratory at very low levels. Other authors distinguish between contamination before and after

sample collection, however, these phenomena are not treated separately here, as the epg contains no

information on the nature of the contamination. The designation of both dropin and dropout depend

on the hypothesised genotypes being assessed. There is no upper limit to the number of dropin alleles,

however, more than two per replicate may be better modelled as an extra unknown contributor to the

CSP, unless the dropin originates from a police officer or laboratory scientist, at which point they can

be included as a known contributor. Any replicated allele should not be treated as dropin, but rather
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as having originated from an extra unknown contributor, as the probability of the same allele dropping

in at multiple replicates is small. Dropin and gross contamination (contamination of a full or near-full

profile) are two extremes of the same process, contamination, but dropins are treated as independent

events to reduce computational complexity, whereas gross contamination is often treated as an extra

unknown contributor.

LTDNA samples also lead to difficulties for analysis that arise from artefacts that are present in

good-template samples, but which cannot confidently be determined to be artefactual under low-template:

Stutter: If there is a large peak in the epg at position x bp, then a small peak can often be seen at position

x−n bp, where n is the length of the repeat unit at that locus, which is termed stutter (S). More rarely

peaks can be seen at x−2n bp, termed double-stutter (DS), and x+n bp, termed over-stutter (OS).

These stutter peaks are believed to originate from an error in the replication of DNA during PCR,

DNA polymerase slippage, where the DNA polymerase enzyme skips a repeat (DS and S) or replicates

a repeat more than once (OS). These stutter peaks are not a problem for good-template DNA samples

e.g. the small peak at D10 allele 12 in Figure 1.1, however, when there is a low-level contributor it can

be difficult to distinguish between a stutter peak of a major contributor and an allelic peak of a minor

contributor.

Degradation: DNA from crime scenes is often degraded due to exposure to the environment for some time

before sample collection; humidity [McCord et al., 2011], bacterial metabolism [Cotton et al., 2000]

and ultraviolet exposure [Diegoli et al., 2012] have all been shown to degrade DNA. Long stretches of

DNA are more susceptible to degradation; Bright et al. [2013c] showed an exponential decay of epg

peak heights with increasing size of an allele in base pairs. Therefore peaks on the right side of an epg

are often lower than those on the left for degraded samples e.g. the peaks at FGA of Figure 1.1 are

slightly smaller than those at D22. High levels of degradation can lead to an overabundance of dropout

for long alleles, especially when the sample is already low-template.

Along with these extra artefacts that need to be accounted for, the increased sensitivity of LTDNA

methods means observation of multiple contributors to a CSP is more likely, often due to gross contamination,

so mixtures are more often encountered for LTDNA samples than good-template samples (a reference profile

is usually a good-template high-quality sample).
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1.8 Dropout model

The dropout model for forensic low-template DNA treats dropouts as Bernoulli events, and has been iterated

on by multiple authors [Gill et al., 2000, 2008, 2012, Balding and Buckleton, 2009, Balding, 2013].

1.8.1 Single contributor

Returning to the scenario that generated (1.3), C=A, GQ=AA, but instead assuming that the observed peak

was low-level then it is no longer obvious that the single peak is from a homozygous individual. (1.3) now

becomes:

LR =
1−D2

p2A(1−D2) + 2pApZD(1−D)
, (1.7)

where D and D2 are the dropout probabilities for a heterozygote and homozygote allele respectively, and Z

is all alleles other than A. D has an inverse relationship with the RFU of a peak. The numerator is now the

P(E|GQ) for which there has been a non-dropout of a homozygote A allele to explain the CSP, 1−D2, and

the denominator is now P(E|GX=AA)+P(E|GX=AZ) allowing genotypes that correspond to a homozygote

non-dropout, GX=AA, and a heterozygote dropout, GX=AZ. Note that when dropout is allowed, GQ=AB

would be able to explain the CSP with probability D(1−D), where previously the probability of Hp would

have been 0 because it was previously assumed that D=0. Logically, D is different between Hp and Hd,

however, a single D is shown under both hypotheses here for illustration purposes, as is common practice

[Gill et al., 2007]. Note that if D=0 and D2=0, (1.7) simplifies to (1.3), the good-template scenario.

Degradation reduces the peak height for long alleles, which leads to a higher probability of dropout.

If an individual’s dose of DNA is k then the degradation adjusted dose, k′, for each of their alleles is modelled

as:

k′ = k(1 + δ)−f , (1.8)

where δ is the degradation parameter, and f is the mean adjusted length of the allele in base pairs. This

up-weights the dose for shorter than average alleles, and down-weights the dose for longer than average

alleles.
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1.8.2 Multiple contributors

With multiple contributors to a CSP, each individual is expected to contribute a different amount of DNA,

and to have a different dropout rate. Tvedebrink et al. [2009] published a model that estimates dropout rates

from average peak heights of a single contributor using logistic regression. From this model, average peak

heights can be converted into doses, k, where an average single heterozygote peak is given dose 1, giving

D(k) as the dropout rate for dose k, leading to:

D(k)

1−D(k)
= (αlk)β , (1.9)

where l is the locus, α is proportional to Tvedebrink’s exp(β0,s/β1) with some proportionality constant that

converts doses, k, to peak heights, H in Tvedebrink et al., and β is Tvedebrink’s β1 parameter. This allows

for the D(k) to be calculated when D(1) is known, where D(1) can be an integrated or maximised parameter

alongside contributions of all hypothesised contributors relative to a specified contributor with fixed dose 1.

The dropout rate for a single-contribution homozygous allele, D2, can now be thought of D(2k) where D(k)

is the dropout rate for a single dose of the allele. This gives the inequality:

D(2k)

D(k)2
≈
(

2

αlk

)β
> 1, (1.10)

which implies that dropout of a homozygous allele can be more likely than locus dropout of two heterozygote

alleles, which is incorrect. This inequality is only relevant for low dropout probabilities [Tvedebrink et al.,

2012], so the incorrect inference is irrelevant for practical purposes.

Returning to the scenario that gave (1.4), C=ABC, GQ=AB, but now assuming both contributors

are low-template, then the multi-dose dropout model assuming no degradation gives the LR in Table 1.1,

where Lp is
∑

P(E|G1,G2)P(Gp) over all red rows, and Ld is
∑

P(E|G1,G2)P(Gd) over all rows. With such

a multi-dose dropout model P(E|G1,G2) is no longer the same for unordered genotypes when each individual

is not a heterozygote non-dropout e.g. P(E|G1 = AA,G2 = BC) differs from P(E|G1 = BC,G2 = AA) and

P(E|G1 = AZ,G2 = BC) differs from P(E|G1 = BC,G2 = AZ) if the two contributors have different dropout

rates. Note that if all D=0, the LR from Table 1.1 simplifies to (1.4), the good-template case.

1.8.3 Dropin

Dropin, as discussed in Section 1.7, is the observation of epg peaks that cannot be explained by one of the

hypothesised contributors. Dropin events are treated as independent Bernoulli events, with probability I.
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G1 G2 P(E|G1,G2) P(Gp) P(Gd)
AA BC (1−D2,1)(1−D1,2)2 2pBpC 2p2ApBpC
BC AA (1−D1,1)2(1−D2,2) p2A 2p2ApBpC
AB AC (1−D1,1)2(1−D1,2)2 2pApC 4p2ApBpC
AC AB (1−D1,1)2(1−D1,2)2 2pApB 4p2ApBpC
BB AC (1−D2,1)(1−D1,2)2 2pApC 2pAp

2
BpC

AC BB (1−D1,1)2(1−D2,2) p2B 2pAp
2
BpC

AB BC (1−D1,1)2(1−D1,2)2 2pBpC 4pAp
2
BpC

BC AB (1−D1,1)2(1−D1,2)2 2pApB 4pAp
2
BpC

CC AB (1−D2,1)(1−D1,2)2 2pApB 2pApBp
2
C

AB CC (1−D1,1)2(1−D2,2) p2C 2pApBp
2
C

AC BC (1−D1,1)2(1−D1,2)2 2pBpC 4pApBp
2
C

BC AC (1−D1,1)2(1−D1,2)2 2pApC 4pApBp
2
C

AZ BC D1,1(1−D1,1)(1−D1,2)2 2pBpC 4pApBpCpZ
BC AZ D1,2(1−D1,1)2(1−D1,2) 2pApZ 4pApBpCpZ
BZ AC D1,1(1−D1,1)(1−D1,2)2 2pApC 4pApBpCpZ
AC BZ D1,2(1−D1,1)2(1−D1,2) 2pBpZ 4pApBpCpZ
CZ AB D1,1(1−D1,1)(1−D1,2)2 2pApB 4pApBpCpZ
AB CZ D1,2(1−D1,1)2(1−D1,2) 2pCpZ 4pApBpCpZ

Table 1.1: Likelihood ratio for a CSP with peaks at alleles A, B and C using a multi-dose dropout model
assuming a single unknown contributor under Hp. Dx,y is the dropout probability for x copies of an allele for
the yth contributor. Each likelihood is the sum of the column products of P(E|G1,G2) and the corresponding
P(G), where Lp is summed over only the rows highlighted in red, while Ld is summed over all rows.

Returning again to the example that gave (1.4) and Table 1.1, C=ABC, and GQ=AB, but instead assuming

the CSP has a single contributor, the CSP cannot be explained in full without invoking dropin. Allowing

dropin, restricted to one dropin event, the LR is:

LR =
pC(1−D)2I

6pApBpC(1−D)2I
, (1.11)

where the denominator is a summation over three genotypes, AB, AC and BC, each with the missing allele

being a dropin event with probability pxI, where px is the population probability of the dropin allele.

If both dropout and dropin are being modelled, and dropin is not restricted to a single event, then any

possible hypothesised genotype allocation is able to explain any possible CSP, although many hypothesised

genotype allocations may be very improbable.

1.8.4 Replicates

A CSP may consist of more than one profiling run performed on the same sample; for LTDNA samples these

replicates will often have different allelic peaks observed in each profiling run, as peak heights, and thus

dropout events, are highly stochastic at low template. The information from any and all replicates can be
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incorporated into a single LR for the overall profile, as shown through the product over replicates in (1.2).

Suppose a CSP consisting of two replicates, C1=A and C2=B, with GQ=AB, while modelling dropout but

no dropin and assuming a single contributor to the CSP. Then:

LR =
D2(1−D)2

2pApBD2(1−D)2
, (1.12)

where under Hd the only genotype that can explain the CSP is AB, because both of those alleles were

observed over the multi-replicate CSP, and that P(E|G) is composed of the first replicate with probability

D(1−D) and the second replicate, also with probability D(1−D). P(G) remains the same as for a single

replicate under both Hp and Hd. Replicate profiling runs will be further discussed in Chapter 2 in the

context of validating software packages through the expected behaviour of the WoE when multiple replicate

runs are performed, and in Chapter 7 in the context of comparing the efficacy of splitting a sample into

multiple replicate runs, or running a single replicate with the maximum amount of DNA available.

1.9 Population genetics

1.9.1 FST

FST was first proposed by Wright [1949] as a measure of genetic variation between subpopulations relative

to that in the total population. An FST value of 1 indicates that all subpopulations are at total fixation,

so in each subpopulation a single allele has probability 1 while all other alleles have probability 0, where

the fixed allele can be different between different subpopulations. This implies that all genetic variation

can be explained by population structure. An FST value of 0 indicates that there is no effect of population

structure on genetic variation, so the total population can be thought of as a single interbreeding population,

rather than n distinct subpopulations i.e. the subpopulation allele probabilities for every allele are identical

between subpopulations, and identical to the total population allele probabilities.

A second interpretation of the FST parameter, which is more directly relevant to forensic genetics,

is that FST measures the extent of relatedness of individuals within the various subpopulations relative to

that in the total population. More relatedness within subpopulations compared to the total population leads

to a high variability in allele probabilities across the subpopulations, and therefore a high value of FST .

In forensic genetics, Q and X may be believed to have shared distant ancestry, in which case the

WoE against Q will depend on any population structure that exists within their population; it is possible that

Q and X share an allele due to it being common in their population rather than because they are the same
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Figure 1.2: Representation of how the probability of drawing an allele from a population depends on the
previous observations of that allele in the population, and FST , when Q has a common allele (left) or a rare
allele (right). Central blue and red circles represent a database of alleles in the population, white circles
represent the rest of the unsurveyed population. Q is assumed to originate from the population, while X is
drawn from the population.

individual, which would imply that Hp is true (Figure 1.2). So an FST correction [Balding and Nichols, 1994]

must be applied to the LR acting through the allele probabilities of Q [Weir, 2007], which should decrease

the WoE against Q with increasing FST . The FST adjustment commonly used [Balding and Nichols, 1994]

is derived from a population genetics sampling formula that assumes that population allele probabilities are

Dirichlet distributed, and that drawing a specific allele from a population then makes it more likely to draw

the same allele in subsequent attempts [Balding and Nichols, 1994]. The sampling formula is given as:

P (A|m,n, FST ) =
mFST + (1−FST )pA

1 + (n−1)FST
, (1.13)

which gives the probability of drawing an A allele from the population when m A alleles have already been

drawn out of n total alleles drawn. If n=10, FST=0.03 and pA=0.2, and no A allele has been observed (m=0)

then the probability of drawing an A allele on the 11th draw needs to be down-weighted as the previous

draws provide evidence that A is more rare than pA implies, P (A|m,n, FST )=0.15, down from pA=0.2. If

instead all observed were A (m=10) then the probability that the 11th draw will be an A allele needs to be

up-weighted, P (A|m,n, FST ) = 0.39.

In a forensic context, the alleles of Q have already been observed, so when the alleles of X are drawn

from the population of Q, the fact that some alleles in that population have already been observed needs

to be accounted for. This is shown in Figure 1.2, where on the left, with FST=0.03, P(red) is 0.78, down
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slightly from the database P(red)=0.80, while on the right P(blue)=0.22, up from the database P(blue)=0.2.

A sample size of four has a special significance in forensic genetics, as this accounts for having

observed both alleles of Q in the population, and then drawing the two alleles of X. In the example that

gave (1.3), C=A, GQ=AA, two alleles have been observed from the population, the two alleles of Q, and they

were both A as Q is homozygous. For a match to the CSP, X must be AA (assuming good-template DNA),

so the alleles of X are sequentially drawn with probability:

2FST + (1−FST )pA
1 + FST

3FST + (1−FST )pA
1 + 2FST

. (1.14)

This is the match probability for a single contributor homozygous locus, a probability with special

relevance in forensic genetics, which has a corresponding probability for a heterozygous genotype, G=AB,

C=AB:

2
FST + (1−FST )pA

1 + FST

FST + (1−FST )pB
1 + 2FST

. (1.15)

These both give the defence likelihood in each case, so the LR for Q is the inverse of this match

probability, because Lp remains as 1. If GX=AA, C=A and pA=0.2, without an FST adjustment LR=25,

but with FST=0.03 the LR is reduced to 15.1, mirroring our reduced confidence that this match originates

because Q contributes to the DNA sample rather than through allele sharing from the population. Note that

if FST=0, both inverse match probabilities (IMPs) simplify to the good-template single contributor LRs,

1/p2A and 1/2pApB . The IMP acts as a theoretical maximum for the LR, and will be utilised to validate the

behaviour of the dropout model in Chapter 2. Throughout the thesis, FST adjustments will be applied to

calculations, except where stated, but FST notation will largely be suppressed.

Choice of an appropriate FST value will be discussed in Chapter 3, while using FST to allow for

misattributed population databases will be discussed in Chapter 4. A full treatment of FST in forensic

genetics can be found in Fung and Hu [2008].

1.9.2 Sampling adjustment

The population allele probabilities in databases must be adjusted for sampling variance during the survey

process. Databases may be biased because they are typically convenience samples rather than random

samples, and because they typically have a low sample size. To demonstrate the need for accounting for

these biases, assume Q possesses an extremely rare allele, W, that has not been observed when collating the
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allele database. Without a sampling adjustment pW=0, so any LR with no Ks would be undefined if W has

not dropped out, as all Hd genotypes must explain W (as either dropin or allelic), so all Ld terms would be

0. This situation is clearly erroneous as W has been observed in Q themselves, so pW > 0. For this reason,

the population allele probability is adjusted [Balding, 1995] as:

p′i =
a+ sn

b+ 2s
, (1.16)

where a is the number of observations of allele i in the database of sample size b alleles, s is the sampling

adjustment, and n indicates the number of alleles of type i that Q possesses. Various authors use values of

1 or 2 for s, but the choice of s has little effect compared to the choice of other parameters, such as FST .

With s=1 this can be thought of as adding the alleles of the Q to the database, in effect assuming Hp is true,

while with s=2 the alleles of both Q and the CSP are being added to the database, in effect assuming Hd

is true. If b=100, this adjustment increases the probability of an unobserved allele to 0.98% and 1.96% for

the homozygous and heterozygous single contributor case respectively with s=1, and to 1.92% and 3.85%

respectively with s=2.

1.10 Population allele probabilities

Considering each likelihood as
∑
j∈n P (E|Gj)P (Gj), it is clear that the likelihood depends on the probability

of a given individual’s genotype, especially under Hd. To determine the value of P (Gj) individuals from

a population are sampled, from which an estimate of pZ for all alleles represented in that population is

obtained. As discussed previously, these estimates are subject to sampling error, meaning that more rare

alleles will be observed as the sample size increases, and the accuracy of estimates will increase as sample

size increases. Sample sizes in the past were typically in the order of hundreds, however, with the adoption of

new loci, and new databases, sample sizes can range from several hundred to several thousand observations

for a population.

While estimating P (Gj) seems trivial once estimates of pZ in a population have been obtained, there

are subtleties that complicate the process.

Firstly, an individual may not fit well into any of the available databases. This may be because an

individual comes from a relatively isolated population, that we know to differ from an available database e.g.

individuals from Sardinia or Iceland would most appropriately fit a Caucasian database, but are known to

differ genetically from the majority of Europeans. Alternatively if an individual is admixed, and for example
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has one African parent and one Caucasian parent, they will not fit either the African or Caucasian database

well. Additionally, there may be no suitable database available; if it is believed that a Fijian individual

committed a crime, and there is no Austronesian population database available, it becomes difficult to

assign an appropriate database.

Secondly, the act of assigning an individual to a database can be difficult. In the UK, the arresting

officer is responsible for assigning what global population an individual comes from, through their physical

appearance. Individuals from some subpopulations may not be closest genetically to the population that the

police office would assign them to, some individuals may be misassigned, and classifying admixed individuals

is difficult.

Thirdly, when using population allele probabilities, we are necessarily considering unprofiled individ-

uals, either X or U . As these individuals are unknown to the forensic scientist, how should it be determined

what population to assign to them for evaluation of P (Gj)? The prevailing method is to compute the LR for

all relevant databases, and to report the most conservative LR to the court. However, this method becomes

impractical with either a large number of unknown individuals, or a large number of relevant databases.

Moreover, this may lead to an analysis that is incongruent with the known case circumstances e.g. a crime

was committed in rural Cornwall, but an East Asian database gives the most conservative LR.

These issues are discussed further in Chapter 4, where a heuristic for the choice of database is

presented, that attempts to alleviate some or all of these difficulties while remaining conservative to avoid

miscarriages of justice.

1.11 Multiple loci

The LR at any locus will be affected by shared relatedness, which was described for distant relatedness in

Section 1.9.1. This means that the LRs at multiple loci are not independent, as they all depend on some

shared ancestry.

Similarly, with the introduction of 16-locus STR kits, each locus is no longer located on a separate

chromosome, meaning some loci are no longer independent for close relatives due to the effects of linkage.

Once the probability of recombination between two loci is low enough, they can be inherited as a single

block, and so the second locus has no bearing on the WoE against Q once the WoE for the first locus has

been evaluated. This is not problematic for LRs where Q is assumed unrelated to X, or when Q and X

are assumed as a parent-child relationship, but can have a significant impact on the LR when Q and X are

closely related e.g. siblings. A full approach for calculating linked-locus LRs is given by Bright et al. [2013a],

35



however, I instead propose to adjust the LR by a factor of:

Ωl
Ωu

, (1.17)

where Ωl is linked match probability, and Ωu is the unlinked match probability.

Once relatedness and linkage have been taken into account the LRs at multiple loci become approx-

imately conditionally independent, so can be combined by taking the product over loci [Buckleton et al.,

2005], often termed the “product rule”.

1.12 likeLTD

likeLTD is an open source software package published on the Comprehensive R Archive Network (CRAN)

that implements a dropout model to evaluate the WoE against Q for LTDNA samples [Balding, 2013].

1.12.1 Uncertain designation

In addition to the allelic and non-allelic calls that other dropout models allow, likeLTD provides an uncertain

designation that ameliorates the difficulty of making definite allele calls for LTDNA samples. Uncertain

designations are particularly useful for positions where it is thought that the stutter of a major contributor

peak may be masking an allelic peak of a minor contributor. Uncertain calls can also be used in any situation

where the true nature of the peak is in dispute, which can include potential pull-up peaks as well as peaks

just above or below the detection threshold. Returning to the example that generated (1.7), GQ=A, but

instead using C=A[B], where [B] indicates that a B allele has been called as uncertain, the LR becomes:

LR =
1−D2

p2A(1−D2) + 2pApB(1−D) + 2pApZD(1−D)
, (1.18)

where Z is now all alleles other than A and B. When a B allele has been hypothesised (middle term under Hd),

the dropout term for that allele is not included in the LR, as the uncertain designation of [B] implies that

it is unknown whether B has dropped out or not. With D=0 and D2=0, the LR no longer simplifies to the

good-template LR (1.3) as GX=AB is being considered, and neither would it simplify to the good-template

scenario if GQ = AB, as GX = AA would still be being considered. Here, the dropout model including the

uncertain extension will be termed the discrete model.
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GQ GX Allelic adjustment Genotypic adjustment

AA AA (2FST+(1−FST )pA)(2FST+(1−FST )pA)
(1+FST )(1+FST )

(2FST+(1−FST )pA)(3FST+(1−FST )pA)
(1+FST )(1+2FST )

AA AB 2 (2FST+(1−FST )pA)(1−FST )pB
(1+FST )(1+FST ) 2 (2FST+(1−FST )pA)(1−FST )pB

(1+FST )(1+2FST )

AB AB 2 (FST+(1−FST )pA)(FST+(1−FST )pB)
(1+FST )(1+FST ) 2 (FST+(1−FST )pA)(FST+(1−FST )pB)

(1+FST )(1+2FST )

AB AA (FST+(1−FST )pA)(FST+(1−FST )pA)
(1+FST )(1+FST )

(FST+(1−FST )pA)(2FST+(1−FST )pA)
(1+FST )(1+2FST )

AB AC 2 (FST+(1−FST )pA)(1−FST )pC
(1+FST )(1+FST ) 2 (FST+(1−FST )pA)(1−FST )pC

(1+FST )(1+2FST )

AB CD 2 ((1−FST )pC)((1−FST )pD)
(1+FST )(1+FST ) 2 ((1−FST )pC)((1−FST )pD)

(1+FST )(1+2FST )

Table 1.2: FST adjusted genotype probabilities for all combinations of matching/non-matching alleles be-
tween Q and X, with both the allelic FST adjustment used in likeLTD and the full genotypic FST adjustment.
This table is included in the likeLTD guide which is included with the package.

1.12.2 FST adjustment

likeLTD does not implement a full genotypic FST adjustment (see Section 1.9.1), but rather an allelic

adjustment. In (1.13) the genotypic FST adjustment depends on both the genotype of Q and the genotype

of X, so separate allele probabilities, px, would have to be computed for every Gj under Hd, as every

Gj considers a different X. likeLTD instead implements an allelic adjustment, where the database allele

probabilities are adjusted as:

(1− FST )p/(1 + FST ) non-Q allele

(FST + (1− FST )p)/(1 + FST ) heterozygote Q allele

(2FST + (1− FST )p)/(1 + FST ) homozygote Q allele

Allelic adjustments need only be applied once before computation, so simplify the overall computa-

tion of the LR. Other choices of allelic adjustment are possible, for example some authors use (1 + 2FST ) as

the denominator, however, this difference will have negligible impact on the final LR, especially compared

to the value of FST chosen.

Table 1.2 gives the full genotypic and allelic FST adjustments for all possible combinations of

shared/non-shared alleles between Q and X. Genotypic adjustments are derived from (1.13). In all geno-

type pairings a denominator (1+FST ) in the allelic adjustment is replaced with (1+2FST ) in the genotypic

adjustment. Otherwise the only difference between the two occurs when X is homozygous, where an FST in

the right hand of the numerator in the allelic adjustment is replaced with 2FST in the genotypic adjustment,

so the greatest difference between the two will be seen when X is homozygous. Note that not only will using

an allelic adjustment alter the LR, but it will also alter the match probability (rows 1 and 3 in Table 1.2),

and therefore the maximum possible LR. Throughout this thesis both LRs and IMPs will be calculated with

an allelic adjustment rather than a genotypic adjustment.
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Validation of likeLTD is presented in Chapter 2, while in Chapter 5 a peak heights model is added

to likeLTD, which is itself validated in Chapter 6. See Gill et al. [2015] for a general review of forensic

practices in STR DNA analysis, and Steele and Balding [2014b] for a review specific to low-template DNA

analysis.
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Chapter 2

Verifying likelihoods for low template
DNA profiles using multiple replicates

Work in this chapter has been published in Steele et al. [2014a], see Appendix B. I generated all of the

laboratory CSPs, simulated all of the simulation CSPs and performed all analyses. The likeLTD discrete

model used to evaluate the CSPs was developed by my supervisor, Prof. David Balding.

2.1 DNA profiling replicates

As described in Chapter 1, multiple profiling runs of LTDNA samples are often performed to assess the

stochastic effects that differ between epgs, such as dropin, dropout and stutter [Steele and Balding, 2014b].

Joint likelihoods for multiple replicates are obtained by assuming that the replicates are independent condi-

tional on the genotypes of all contributors and the model parameters, φ, such as the amounts and degradation

levels of DNA from each contributor [Curran et al., 2005], given in (1.2).

There is currently no consensus on an approach to verify the validity of an implementation of a

model to calculate LTDNA LRs (ltLRs). One possible approach is to evaluate the ltLR for the CSP, but to

repeatedly replace Q with a randomly generated profile [Gill and Haned, 2013]. With a random profile as Q,

Hp is almost always false, so the majority of computed ltLRs are expected to be small. A method proposed

by [Taylor et al., 2015] extends that of Gill and Haned to verify that the mean ltLR over all random profiles

for Q is 1.0 when Hd is true, as stated by Alan Turing [Good, 1950]. This method gives an indication of the

validity of a model, but is primarily concerned with the reliability of a specific LR. In this chapter, a method

is explored which instead proposes a performance indicator for ltLR algorithms when Hp is true, rather than

when Hd is true. Under Hd, it may occur that GX=GQ; this occurs with probability πQ=Pr(GX=GQ), the
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match probability for Q. Since Pr(E|Hd,GX=GQ) = Pr(E|Hp), it follows that [Cowell et al., 2015]

ltLR =
Pr(E|Hp)

Pr(E|Hd,GX=GQ)πQ + Pr(E|Hd,GX 6=GQ)(1−πQ)
≤ 1

πQ
. (2.1)

Therefore 1/πQ, the IMP, acts as an upper bound on the LR. It is then possible to describe an LR in

terms of a fraction of the IMP, which in this chapter and subsequent chapters will be termed the information

gain ratio (IGR) and defined as log10(LR)/ log10(IMP). This measure normalises the LR between different

CSPs, and between different queried contributors, so that the maximum IGR is 1.0, and support for Hd

is negative. Other measures considered were the log ratio, log10(LR/IMP), or the ratio, LR/IMP. The log

ratio measure has maximum 0 and supports Hd at < log10(IMP). The ratio measure has maximum 1.0, and

supports Hd at < 1/IMP. With both alternative measures, support for Hd depends on IMP, and so both are

less suitable for comparing across CSPs and queried contributors.

If Q is the major contributor to a good-template profile, then E implies that GX=GQ and equality

should be achieved in (2.1). If instead Q is the major contributor to a LTDNA profile, if Hp is true then

increasing numbers of LTDNA replicates should provide increasing evidence that GX=GQ, so the ltLR should

converge to the IMP, and the IGR should converge to 1.0. Even for mixtures the ltLR should approach

the IMP, since differential dropout rates should allow for deconvolution of the alleles of Q from multiple

replicates. However, the ltLR may be prevented from approaching the IMP due to possible inadequacies

in the mathematical model or approximations being amplified with additional replicates. This expected

convergence of the ltLR towards the IMP as the number of replicates increases can be used as an indicator

of the validity of an algorithm to compute the ltLR when Q is the major contributor.

For a minor contributor Q, it may not be possible to determine the genotype of Q, even with many

replicates, so the ltLR may not reach the IMP. However, the bound, (2.1), is still valid for minor contributors,

so the ltLR should continue to approach the IMP with additional replicates. To give some indication of the

extra information available through multiple replicates, the ltLR can be compared to the LR for a high-

quality mixture where all contributors are fully observed (mixLR, or mixIGR) computed using only the

presence or absence of alleles, so no uncertain designations [Weir et al., 1997].

Suppose the hypotheses for C=ABC, GQ=AB, are of the form:

Hp: Q + U ,

Hd: X + U .

Then the mixLR is:
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mixLR =

∑np

j=1 Pr(C=ABC,GQ=AB|Q,Uj)Pr(Uj |GQ)∑nd

j=1 Pr(C=ABC,GQ=AB|Xj ,Uj)Pr(Xj ,Uj)

=
Pr(GU is one of AC,BC,CC)

Pr((GX ,GU ) is one of (AA,BC),(AC,BB),(AB,CC),(AB,AC),(AB,BC),(AC,BC))
, (2.2)

where within-pair ordering is ignored in the denominator for simplicity. Under the standard popu-

lation genetics model [Gill et al., 2006, 2012] and setting FST = 0, the mixLR is then:

∑np

j=1 Pr(C=ABC,GQ=AB|Q,Uj)Pr(Uj |GQ)∑nd

j=1 Pr(C=ABC,GQ=AB|Xj ,Uj)Pr(Xj ,Uj)
=

2pA+2pB+pC
12pApB(pA+pB+pC)

<
1

2pApB
, (2.3)

which is the same as (1.4), as the contributor ordering is not ignored here, and is less than the IMP =

1/2pApB . See [Balding, 2005] and Chapter 1 for further details and examples. Because no peak height

information is utilised to generate the mixLR, it can be thought of as the LR for an equal-contributions

mixture where all contributors are good-template.

The ltLR with multiple replicates should not only reach the mixLR, due to identification of all alleles

present in any contributor, but should also exceed the mixLR, because differential dropout rates should allow

the alleles of different contributors to be deconvoluted, partially if not fully. In fact, subsampling has been

proposed by Ballantyne et al. [2013] to enhance mixture deconvolution by generating divergent mixture

ratios in distinct low-template replicates. This proposal is explored in Section 2.5.3 by evaluating a real-

world multi-replicate CSP where each replicate was profiled with one of two different sensitivities. The more

general behaviour of the ltLR in relation to the mixLR and IMP will be investigated throughout this chapter,

utilising both laboratory-generated CSPs and simulated CSPs.

2.2 Experimental protocol

2.2.1 Laboratory replicates

Cheek swab samples were obtained from five volunteers, and DNA was extracted using a PrepFiler Express

BTATM Forensic DNA Extraction Kit and the Life Technologies Automate ExpressTM Instrument as per the

manufacturer’s recommendations. The samples were then quantified using the life Technologies Quantifiler R©

Human DNA Quantification kit as per the manufacturer’s recommendations.

Each sample was serially diluted after extraction and then amplified using the AmpF`STR R© SGM
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Study #
Cond.

Contributions PCR Enhance. Hypotheses tested
type Conts. A : B : C (pg) cycles strat. Hp Hd

Lab-based

1
(i) 0 : 500 : 0 28 - Q (B) X
(ii) 0 : 60 : 0 28 - Q (B) X
(iii) 0 : 15 : 0 28 - Q (B) + dropin X + dropin

2

(iv) 500 : 0 : 30 28 -
Q (A) + dropin X + dropin
Q (A) + U1 X + U1
Q (C) + U1 X + U1

(v) 60 : 0 : 500 28 -
Q (C) + dropin X + dropin
Q (C) + U1 X + U1
Q (A) + U1 X + U1

3

(vi) 60 : 60 : 60 28 - Q (A) + U1 + U2 X + U1 + U2
(vii) 60 : 60 : 60 28 Phase 1 Q (A) + U1 + U2 X + U1 + U2
(viii) 60 : 60 : 60 28 Phase 2 Q (A) + U1 + U2 X + U1 + U2
(ix) 60 : 60 : 60 30 - Q (A) + U1 + U2 X + U1 + U2

Table 2.2: Experimental conditions and hypotheses compared to investigate replication in the laboratory.
Cond. gives the condition index from Table 2.1, Contributions gives the approximate DNA contributions
for donors A, B and C in pg. Enhance. strat. gives the enhancement strategy for the condition. Under
Hypotheses tested Q denotes the queried contributor, who is one of A, B or C as indicated in parentheses,
X is an unknown alternative to Q under Hd, while U1 and U2 are unknown contributors under both Hp and
Hd.

Study # Pr(D)
Pr(C)

Pr(unc) Hypotheses tested
type Conts. A : B : C υ ∼Pois(λ = 1) Hp Hd

Simulation

1

1.0 : 0.0 : 1.0 0.00 - Q (B) X
1.0 : 0.4 : 1.0 0.05 - Q (B) + dropin X + dropin
1.0 : 0.8 : 1.0 0.05 - Q (B) + dropin X + dropin

- - 0.8 Q (B) X
- - 0.4 Q (B) X

2

0.2 : 1.0 : 0.8 0.00 -
Q (A) + dropin X + dropin
Q (A) + U1 X + U1
Q (C) + U1 X + U1

0.2 : 1.0 : 0.6 0.00 -
Q (A) + dropin X + dropin
Q (A) + U1 X + U1
Q (C) + U1 X + U1

3
0.8 : 0.5 : 0.2 0.00 - Q (A) + U1 + U2 X + U1 + U2
0.5 : 0.5 : 0.5 0.00 - Q (A) + U1 + U2 X + U1 + U2
0.2 : 0.5 : 0.8 0.00 - Q (A) + U1 + U2 X + U1 + U2

Table 2.3: Simulation parameters and hypotheses compared to investigate replication in silico. Pr(D)
denotes the probability of dropout for a heterozygote allele for donors A, B and C; where Pr(D)=1.0, that
contributor was not included in the simulation. Pr(C) denotes the probability of dropin. Pr(unc) indicates
the probability of designating a CSP allele as uncertain. υ indicates the number of uncertain dropins per
locus per replicate; see text for further details. Q denotes the queried contributor, who is one of A, B or C
as indicated in parentheses. X is an unknown alternative to Q under Hd, while U1 and U2 are unknown
contributors under both Hp and Hd. Profiles were simulated from the profiles of the same donors that were
investigated in the laboratory (see Tables 2.1 and 2.2).
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Study # Sampled Hypotheses tested
type Conts. replicates Hp Hd

Real-world ≥ 3
Standard and sensitive Q + U1 + U2 X + U1 + U2

Standard only Q + U1 + U2 X + U1 + U2
Sensitive only Q + U1 + U2 X + U1 + U2

Table 2.4: Sampling strategy and hypotheses compared to investigate replication for a real-world crime
sample. Q denotes the queried contributor, X is an unknown alternative to Q under Hd, while U1 and U2
are unknown contributors under both Hp and Hd. The sampled replicates were generated in the course of
casework investigation of a real crime.

Plus R© PCR kit as per the manufacturer’s recommendations on a Veriti R© 96-Well Fast Thermal Cycler.

An ABI 3130 Sequencer was used to analyse 1 µl of the PCR products, with 10 second injections

at 3 kV; these settings were used for all subsequent analyses. The results returned from the 3130 sequencer

were analysed using GeneMapper R© ID v3.2 to determine which samples were suitable for further use.

For the one-contributor investigation eight replicates of each of three conditions were created (Table

2.1). The conditions were created to investigate increasing dropout rate. For the 500 pg and 60 pg conditions,

one-contributor hypotheses were compared, B under Hp and X under Hd, while for the 15 pg condition dropin

was also modelled under both hypotheses (Table 2.2). Note that throughout this chapter, the DNA quantity

refers to approximate DNA quantity per replicate.

For the two-contributor investigation eight replicates of each of two conditions were created (Table

2.1). The major and minor contributors were reversed between conditions, with an increased DNA contribu-

tion from the minor. These samples were amplified and analysed as described previously. Two-contributor

hypotheses were compared, with each of A and C in turn playing the role of Q, while the other contributor

was treated as unknown. Additionally one-contributor-plus-dropin hypotheses were compared, with only the

major contributor playing the role of Q (Table 2.2).

For the three-contributor investigation eight replicates of each of four conditions were created (Table

2.1). The conditions were created to investigate different profiling protocols. The Phase 1 and Phase

2 conditions are post-PCR purification protocols designed to enhance the sensitivity of detection of the

standard protocol [Roeder et al., 2009], and both involve concentrating the post-PCR product using an

Amicon R© PCR microcon unit according to the manufacturer’s recommendations. Phase 1 enhancement

increases the amount of formamide in the mixture compared to the manufacturer’s recommendations, while

Phase 2 enhancement increases the amount of DNA, formamide and ROX compared to Phase 1. For all four

conditions (30 cycles, 28 cycles, Phase 1, and Phase 2), three-contributor hypotheses were compared, with A

playing the role of Q and the other contributors treated as unknown (Table 2.2). Dropin was not modelled
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under either hypothesis, although dropin was included in the simulations. This reflects a realistic challenge

for few replicates with multiple contributors, whereby any dropin alleles may be wrongly attributed to one

of the contributors. However the incorrect model will lead to deterioration of inferences for larger numbers

of replicates.

2.2.2 Simulated replicates

All of the conditions described in this section were simulated in eight replicates, with the whole simulation

being performed five times. Initially a number of single-contributor CSPs were simulated using the profile of

individual B. The first condition investigated was a “perfect match”, in which all eight replicates generated

exactly the profile of B. Next mild dropout (Pr(D)=0.4) and severe dropout (Pr(D)=0.8) of the alleles of B

were introduced, in each case with dropins included at rate Pr(C)=0.05 (at most one dropin per locus per

replicate). The homozygous dropout probability was set equal to Pr(D)2/2, as suggested by [Balding and

Buckleton, 2009]. The effect of uncertain allele designations was then investigated by randomly designating

some alleles of B as uncertain, first with Pr(unc)=0.4 and then Pr(unc)=0.8. In both conditions, at each

locus and in each replicate a Poisson mean one number of alleles not in the profile of B was also designated

as uncertain, with types randomly selected according to frequencies in the UK Caucasian database. For all

these simulated profiles, one-contributor hypotheses were compared, B under Hp and X under Hd.

Next two-contributor CSPs were simulated, based on the profiles of A and C. Two conditions were

simulated, both used PrA(D) = 0.2, while PrC(D) was initially 0.8 and then 0.6. Dropin was not simulated.

For shared alleles the dropout probability was the product of the dropout probabilities for each contributor

having that allele. Two-contributor hypotheses were compared, with each of A and C in turn taking the

role of Q, while the other was treated as unknown in the analysis. Additionally one-contributor-plus-dropin

hypotheses were compared, only for A playing the role of Q (Table 2.3).

Three-contributor CSPs were then simulated under three conditions, with dropout probabilities for

Donors A, B and C as shown in Table 2.3. Dropin was included as for the one-contributor simulations.

Three-contributor hypotheses were compared, with A playing the role of Q and the other two contributors

being treated as unknown.

2.2.3 Crime case replicates

A CSP from an actual crime investigation was explored, consisting of five replicates: two using standard

SGM+ profiling and three generated using a low copy number (LCN) protocol with 34 PCR cycles. Only
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Sensitive profiling Standard profiling
Locus Run 1 Run 2 Run 3 Run 4 Run 5

D3 16, [15] 16, [15] 16, 18, [15] 16 16
vWA 15, 16, [17] 15, [14] 15, 18, [14] 15 15
D16 9 9 9, 11, [10] 9 9
D2 17, 19, 24 16, 17, 24,[23] 17, [16] 24 24
D8 8, 13, 15, 16 8, 12, 13, 16, [15] 8, 13, 14, 16, [15] [8]
D21 30, 32, 33.2 32, 32.2, 33.2 32, 32.2, 33.2, 34, [31] [32], [32.2] [33.2]
D18 12, 17 12, 17, 19 12, 17, [11], [16] [17] 17
D19 14, 21, [13] 11, 14, [13] 14, [13] 14 14

TH01 6, 9.3 6, 9.3 6, 8, 9.3 [6], [9.3] [6]
FGA 21 21, [20] 21, 20 21

Table 2.5: Five replicates of a crime scene profile, three from a sensitive LTDNA profiling technique and two
from standard DNA profiling. Alleles shown in [ ] were called as uncertain.

limited information about the profiling protocol was provided by the profiling lab. Extraneous details are

not required by likeLTD because it estimates the unknown parameters from the CSP allele designations. The

five actual replicates were re-sampled to generate simulated profiles with up to eight replicates, consisting of

standard replicates only, sensitive replicates only, or both. Six distinct alleles were observed at locus D8, but

no more than three replicated alleles were observed at any locus, so the minimum number of contributors

is three. Therefore, three-contributor hypotheses were compared, with all contributors unknown under Hd,

and no dropin (Table 2.4).

2.3 Single-contributor results

2.3.1 Lab-based

For the good-template experiments (500 pg) full information (IGR=1.0) is obtained with just a single repli-

cate, and the IGR does not exceed one with the addition of replicates two through eight (Figure 2.1, left,

red). This is expected for a good-template single-contributor sample, and demonstrates that there is no

deterioration in the modelling assumptions with a large number of replicates in this simple scenario.

Low DNA template (60 pg) reduces the IGR to approximately 0.9 at one replicate, however, the IGR

is close to 1.0 at two replicates, and IGR≈1.0 with subsequent additional replicates (Figure 2.1, left, purple),

but never exceeds IGR=1.0. The total DNA contribution at eight replicates is roughly equal to that of a

single replicate of the good-template condition (480 pg for eight replicates of the 60 pg, 500pg for a single

replicate of the 500 pg), and both obtain full information at this level of total DNA. The low DNA template

results suggest that full information should be available from a single replicate of 120pg DNA, equalling the
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Figure 2.1: The low-template information gain ratio (ltIGR) from one-contributor CSPs evaluated using
from one up to eight replicates. Left: lab-based replicates, with DNA template (in pg) as shown in the
legend box. Middle: simulated replicates with dropout (probability Pr(D)) and dropin (probability Pr(C));
the plotted points represent the median from five repetitions of the simulation, and the vertical bars show
the range. Right: simulated replicates with uncertain allele calls probability=Pr(unc) for a true allele to be
uncertain, and a Poisson (rate λ=1) number of non-alleles labelled as uncertain at each locus.

DNA contribution from 20 cells (one cell ≈ 6 pg DNA).

For very low DNA template (15 pg) IGR ≈ 0.5 for a single replicate, which constitutes between two

and three cells worth of DNA (Figure 2.1, left, blue). Replicate profiling brings the IGR substantially closer

to 1.0, but not entirely, with IGR ≈ 0.95 at eight replicates. Note that the 60 pg condition (purple) was able

to reach IGR≈1.0 with 120 pg total contribution (two replicates), while 15 pg condition (blue) was unable

to reach IGR=1.0 at 120 pg total contribution (eight replicates). At four replicates the approximate total

DNA contribution is equal to that of a single replicate of the low DNA template condition (60 pg); the IGRs

for each are similar, but with a lower IGR for the replicated very low template condition (≈0.9 for 1×60 pg,

≈0.8 for 4×15 pg). Similarly, at eight replicates the total DNA contribution is equal to the two replicates

60pg condition, with a similar IGR but slightly lower in the condition with more replicates (≈1.0 for 2×60

pg, ≈0.95 for 8×15 pg). Comparisons of experiments with approximately equal DNA contributions, such as

these, are analogous to investigating pre-extraction replicates, where a sample that contains x pg DNA is

split into n replicates of x/n pg DNA. All such scenarios here return a lower IGR in the condition with more

replicates, suggesting that the reduced per-replicate DNA contribution introduces increased stochasticity

that decreases the IGR from the same total DNA contribution. Alternatively, the difference in IGR may

result from pipetting variability, as the sample size here is small, with just three paired comparisons. The

scenario of splitting a sample into replicates will be further investigated in Chapter 7 using a continuous

model for analysis.
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2.3.2 Simulation

Similar behaviour is seen in the simulation studies as was observed in the laboratory studies. The median

IGR rises to 1.0 with a small number of replicates, but does not exceed it (Figure 2.1, middle) for both the

perfect match (Pr(D)=0, red) and mild dropout (Pr(D)=0.4, purple) conditions. For the severe dropout

(Pr(D) = 0.8, blue) the median IGR rises towards 1.0 but does not reach it by eight replicates. By using

IGR to display the WoE, it is possible to estimate a Pr(D) that roughly corresponds to a DNA contribution;

Pr(D)=0.4 is somewhere between 15 and 60 pg DNA, while Pr(D)=0.8 is equivalent to less than 15 pg DNA.

However, the Pr(D) implemented for these simulations was uniform across alleles, whereas in reality Pr(D)

is expected to increase with allele length in base pairs due to the effects of degradation. Degradation would

be limited when considering laboratory-generated samples such as those in Section 2.3.1.

As described in Chapter 1, the availability of uncertain allele designations is a novel feature of

likeLTD, which mitigates the problem of choosing a detection threshold, as highlighted by [Budowle et al.,

2009], as an all-or-nothing call is no longer necessary. IGR≈1.0 is reached at five and eight replicates for the

low and high rates of uncertain calls respectively (Figure 2.1, right), despite up to 80% of true alleles being

designated as uncertain and inclusion of multiple uncertain non-alleles. Neither condition exceeds the bound

of IGR=1.0, even with many replicates. However, Pr(unc) was uniform across alleles, but should vary with

allele length in a real-world scenario as calling a peak as either uncertain or dropout depends on the peak

height, which is affected by degradation and/or amplification efficiency.

2.4 Two-contributor results

2.4.1 Lab-based

When the minor contributor of a laboratory generated two person mixture provides only 30 pg of DNA

(Figure 2.2, top left panel), then if Q is the major contributor the IGR is very close to 1.0 for all numbers

of replicates (solid and dashed blue lines), whereas if Q is the minor contributor then the IGR remains

substantially lower than 1.0, even at eight replicates (solid red line). However, even with this very low

template for the minor, the ltIGR exceeds the mixIGR with six or more replicates. When the major and

minor contributors are reversed, and the amount of DNA from the minor is doubled (Figure 2.2, bottom

left), then if Q is the minor contributor the ltIGR exceeds mixIGR from six replicates again, and rises to

within 0.2 of IGR=1.0 at eight replicates. Under both conditions, the two-contributor analysis gives a very

similar result to the one-contributor-with-dropin analysis.
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Figure 2.2: The low-template information gain ratio (ltIGR) from two-contributor CSPs profiled at up to
eight replicates. Left: lab-based replicates, with the DNA template from the minor contributor greater in
the lower panel (see legend boxes). Right: simulation-based replicates, with the minor contributor having
reduced dropout in the lower panel. The simulated CSPs were generated from the profiles of Donors A and
C, and the line colours on the graph indicate whether the queried individual (Q) is A (blue) or C (red). Solid
lines indicate a two-contributor analysis, with the non-Q individual regarded as unknown (U1). Dashed lines
indicate a one-contributor analysis that also allows for dropin (only for Q the major contributor). The IMP
is shown with a grey dot-dash line at IGR=1.0. The IGR equivalent to mixLR is shown with dotted lines,
coloured according to Q. In the legend boxes, H indicates the hypotheses with X an unknown alternative
to Q, and Pr(D) indicates the probability of dropout.
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At eight replicates of 30 pg the total DNA contribution from donor C (red) is ≈ 240 pg, and yet

the ltIGR is similar to that of a single replicate when the donor C contributes 500 pg of DNA from a single

replicate (both IGR≈0.7). Conversely at eight replicates of 60 pg the total DNA contribution from donor A

(blue) is ≈ 480 pg, similar to the 500 pg at a single replicate when donor A is the major contributor, and the

IGR for multiple replicates is lower than that for a single replicate (IGR for 1×500 pg≈1.0, IGR for 8×60

pg≈0.9). This suggests that deconvoluting the major and minor contributors is more difficult when they

contribute a more similar amount of DNA (minor contributes ∼6% of DNA at 30 pg, and ∼11% of DNA at

60 pg).

2.4.2 Simulation

When the minor contributor of a simulated two person mixture is subject to high dropout (Figure 2.2, top

right), then if Q is the major contributor the ltIGR exceeds the mixIGR with two or more replicates, with

the median ltIGR rising rapidly to approximately 0.9 IGR with three replicates, but rising towards 1.0 only

slowly with additional replicates. The one-contributor-plus-dropin analysis gives ltIGRs that are broadly

similar to the two-contributor analysis, but with a wider range, especially at many replicates, indicating

greater variability; with many replicates many of the minor contributors alleles will be replicated, but are

being explained as dropin with the one-contributor-plus-dropin analysis. If Q is the minor contributor, the

median ltIGR increases rapidly from a low base, and stabilises after about five replicates, at approximately

0.6 IGR, which exceeds the mixIGR by approximately 0.1. The range increases after three replicates, and

remains high up to eight replicates. The expected number of observed alleles for a fully heterozygous genotype

is 16 for the major and 4 for the minor, so the minor alleles are unlikely to mask the major alleles.

With reduced dropout for the minor contributor (Figure 2.2, bottom right), deconvoluting the geno-

type of the major contributor Q is harder because of additional masking by alleles of the minor contributor.

The median ltIGR in both the two-contributor and one-contributor-plus-dropin analyses reaches ≈ 0.9 IGR

at eight replicates, with the latter showing a greater range again. Conversely, the lower dropout rate leads

to improved inference for a minor contributor Q, with the median ltIGR rising to ≈ 0.8 IGR at eight repli-

cates, which exceeds the mixIGR from four replicates onwards. Interestingly, from six replicates onwards the

range of the minor contributor ltIGR overlaps the range for the major contributor. The expected number of

observed alleles for a fully heterozygous genotype are 16 for the major, and 8 for the minor, approximately

doubling the probability that the minor may share an allele with the major.

Due to the interplay between the two contributors’ genotypes, through masking, it is more difficult
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to infer what Pr(D) equates to what DNA contribution, however, Pr(D)=0.2 is equivalent to less than 500

pg DNA. Pr(D)=0.8 is approximately equivalent to 30 pg DNA, while it is difficult to estimate what DNA

contribution Pr(D)=0.6 is equivalent to.

The one-contributor-plus-dropin analyses show a good approximation to the two-contributor analy-

ses, but with a greater divergence than was seen in the laboratory-generated CSPs.

The genotypes were simulated with a single Pr(D) for all alleles, when in reality Pr(D) is altered by

allele length acting through degradation, which likeLTD assumes when calculating the WoE. Therefore the

model used to generate the data simulated here does not match the model used to evaluate the WoE, which

may have caused some of the high variances, the lack of reaching the IGR, or the divergence between the

one-contributor-plus-dropin and two-contributor analyses.

2.5 Three-contributor results

2.5.1 Lab-based
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Figure 2.3: The low-template information gain ratio (ltIGR) for three-contributor crime stains profiled with
one to eight replicates. Left: laboratory replicates using four lab techniques indicated in the legend box and
described further in Materials and Methods. Middle: simulated replicates with dropout rates for the three
contributors as shown in the legend box against Pr(D), the first value being for the queried contributor.
Pr(C) is the dropin probability. Right: re-sampled actual crime-stain replicates; the original data are two
standard profiling replicates, and three replicates using enhanced sensitivity. The ltIGR returned from a
perfect replicate of the contributors (consisting of every allele from each contributor) is shown with dotted
lines; this is not possible for the real-world case, as the true contributors are unknown.

The laboratory-based three-contributor CSPs were generated specifically to compare different LTDNA

profiling techniques, which differs from the laboratory investigations presented previously. The three con-

tributors were included at equal DNA contributions, approximately 60pg each, to make this test the most
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challenging possible, as the genotypes of different individuals are difficult to deconvolve when the contributors

are at equal contributions.

The 30 PCR cycles condition gives an ltIGR of ∼0.4 at one replicate but little improvement with

additional replicates, with an ltIGR at eight replicates of ∼ 0.4 (Figure 2.3, left, purple); this exceeds the

mixIGR for all evaluations other than the six replicates evaluation. The ltIGR does increase with increasing

numbers of replicates for the other amplification methods, but in no case did the ltIGR exceed 0.6. As

expected, the ltIGR for both Phase 1 (red) and Phase 2 (green) enhancement exceeds that for standard 28

PCR cycles across the range of replicates, with Phase 2 enhancement typically giving a slightly larger ltIGR

than Phase 1 enhancement, and both exceeding the ltIGR with three or more replicates. The 28 PCR cycles

(blue) ltIGR exceeds the mixIGR with four or more replicates.

These results suggest that 28 cycle PCR (regardless of enhancement) is preferable to 30 cycle PCR

beyond one replicate. It is known that increasing the number of PCR cycles introduces more stochasticity

in the results, as stated in the AmpF`STR R© SGM Plus R© PCR Amplification Kit user guide. Post-PCR

enhancement provides extra information over an unenhanced sample, with Phase 2 enhancement provid-

ing a small further improvement over Phase 1. These results support those of Forster et al. [2008], who

demonstrated that increasing PCR cycles increases the size of stutter peaks and the incidence of dropin;

the observation here of no improvement in the WoE for 30 PCR cycles is possibly due to these increased

stochastic effects.

2.5.2 Simulation

All three curves in Figure 2.3 (middle) show an increasing ltIGR with an increasing number of replicates, with

the median ltIGR being in the expected order throughout (median ltIGR for low>medium>high dropout

rates). The median ltLR exceeds the mixIGR after one, two and four replicates for the low, medium and high

dropout conditions respectively. The ltIGR is strongly dependent on the details of the specific simulation,

leading to a high range for the ltIGR; in particular the degree of allele sharing across simulated contributors.

2.5.3 Real-world case

The standard-only and sensitive-only ltIGRs show a similar trend, increasing up to five replicates before

falling slightly, with the standard-only ltIGR being approximately 0.2 below the sensitive-only ltIGR through-

out (Figure 2.3, right). The ltIGR using both standard and sensitive replicates exceeds that for both the

other conditions after two replicates, reaching ltIGR>0.9 after eight replicates. This may be due to the lim-
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ited pool of replicates available from the actual crime case, but suggests that employing different sensitivities

in the profiling replicates may allow different contributors to be better distinguished, and so may result in a

higher ltIGR than using the same number of replicates but with a single sensitivity.

2.6 Overview

In all conditions tested, the ltIGR has been bounded at 1.0, so the likeLTD ltLR has been bounded by the

IMP, as predicted by (2.1). The mathematical model underlying the dropout model (see Chapter 1), and its

implementation in likeLTD are validated by the tight bounding of the ltLR when a high-level contributor is

queried (Figures 2.1 and 2.2). Moreover, these results demonstrate that the full genotype of a contributor

can be deconvoluted from a mixture using multiple noisy profiling replicates [Schneps and Colmez, 2013],

rather than detrimentally compounding the noise from the replicates.

Furthermore, the mixLR was exceeded in all 19 of the tested conditions for which a mixLR could

be computed, and was often exceeded after only a small number of replicates. The inference is that a single

replicate good-quality profile correctly representing the alleles of all contributors (mixLR) provides weaker

evidence than multiple LTDNA replicates (ltLR) in all conditions. This is because differential dropout rates

between replicates allow different contributors to be partially distinguished, which is not possible with a fully

represented high-quality sample, supporting the proposition of Ballantyne et al. [2013] to perform multiple

replicates at divergent mixture ratios.

2.6.1 Use of replicates

Pfeifer et al. [2012] advocate the use of multi-replicate CSPs to overcome the inherent variability of LTDNA

analysis, while Grisedale and van Daal [2012] instead support performing a single profiling run with as much

DNA as is available. Note that the conclusion of Grisedale and van Daal is based on a comparison with

analysing a consensus sequence obtained from multiple replicates, which is a less efficient approach than

analysing all replicates individually in a single CSP. While the results presented throughout this chapter

demonstrate increased IGR with increasing replicates, and therefore support replication, this does not inform

on the relevant question; both Pfeifer et al. and Grisedale and van Daal were commenting on the use of a

single run of x pg DNA versus the use of n replicates each with x/n pg DNA. The small number of such

comparisons that are available from the data in this chapter, six, suggest that the process of splitting a sample

into replicates reduces the information content of the CSP (replicated IGR≤unreplicated in five out of six
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comparisons), however, the low number of comparisons and small differences mean that that this may be

noise. Further results are presented in Chapter 7 that directly investigate the effect of splitting a sample into

multiple replicates. Post-extraction replication often does not require splitting a sample because standard

extraction produces a volume of extract that is a few times larger than is optimal for PCR allowing for a

few replicates (between four and six); the results presented here support the use of post-extraction replicates

to maximise the information available in a CSP. However there are strategies that may be employed that

remove this availability of post-extraction replicates. It is possible to purify the extract either through dialysis

[Williams et al., 1994], filtering through a spin column [McCord et al., 1993, Ruiz-Martinez et al., 1998], or

alcohol/salt precipitation [Nathakarnkitkool et al., 1992], after which it may be possible to run the whole

extract through PCR. However, these methods may be unsuitable for a mixture with a good-template major

contributor and one or more low-template contributors, as enhancing the signal for the minor contributors

may lead to oversaturation of the major contributor.

Eight replicates were used here to rigorously test the behaviour of the ltIGR returned by likeLTD

in relation to the IMP and mixIGR. Taberlet et al. [1996] have suggested that seven replicates are required

for low-template samples to generate a high-quality profile, however, seven replicates are rarely available in

real world low-template crime samples [Budowle et al., 2009].

2.7 Improvements

As mentioned previously, Pr(D) and Pr(unc) in reality will vary with the fragment length of the dropout

or uncertain allele if degradation has occurred. However, the Pr(D) and Pr(unc) used to simulate CSPs

throughout were uniform across fragment lengths. Similarly, if degradation has occurred, Pr(unc) should

behave differently whether an observed true allele is being called as uncertain or whether an unobserved false

allele is being inserted as uncertain; Pr(unc) for a true allele should increase with fragment length, while

Pr(unc) for a false allele should decrease with fragment length. A future study that wished to implement

fragment length adjusted probabilities of dropout and uncertains would need to include conditions with

multiple levels of simulated degradation to investigate how degradation affects the results observed here.
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Chapter 3

Worldwide FST estimates relative to
five continental-scale populations

Work in this chapter has been published in Steele et al. [2014b], see Appendix B. I performed data munging,

all analyses, and coded the direct method from preliminary code provided by Prof. David Balding. The data

were collected and provided by Dr. Denise Syndercombe Court. The indirect method was implemented in

BayesFST by Prof. David Balding.

3.1 FST in forensics

FST adjustments are widely used in forensic genetics during analyses of mixed and low-template DNA

profiles, and can have a substantial impact on the WoE. As described in Chapter 1, an FST adjustment can

be formulated using the sampling formula, (1.13), to account for the fact that Q may share alleles with X

due to shared ancestry, rather than because Q contributes to the CSP. This is a direct interpretation of the

FST parameter, measuring genetic variability between subpopulations compared to the genetic variability

in the total population. It is also possible to view an FST adjustment as allowing for the fact that any

available database will not fit the case circumstances exactly. This introduces extra uncertainty, which

reduces confidence in any result from that database, so the FST adjustment reduces the LR with increasing

FST . See Chapter 1 for further background to the formulation of the FST adjustment used in forensic work.

It is common in population genetics to estimate an FST value relative to some hypothetical ances-

tral population (see Figure 3.1). In forensic casework a database of allele probabilities is available from a

population survey; in this case the most relevant FST value is relative to the surveyed database rather than

to a hypothesised ancestral population. If a database is used that is directly appropriate for Q and X, then

a small value of FST may be sufficient even when Q and X share a very similar ethnic background. The
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most appropriate FST value increases with an increasing dissimilarity between the database used and the

ethnic background of Q and X [Steele and Balding, 2014b]. Regardless of the fit of the database chosen to

Q and X, a large value of FST is usually applied to any X that shares a population with Q, adhering to

the maxim “innocent until proven guilty” by generating a conservative LR. A small value is applied when

X and Q do not share a population, as they are expected to share little coancestry relative to the database

chosen for X e.g. when Q is Caucasian and an Afro-Caribbean X is considered. FST accounts for the fit of

the chosen database to the ethnicity of X, not Q. Issues surrounding the choice of an appropriate database

for a necessarily unknown individual, X, are discussed in Chapter 4. Extra uncertainty is introduced into

the forensic estimates of FST as each alternative contributor has a different ethnic background, and because

FST is usually estimated at a scale that is not suitable for forensic analysis.

S1

S2

S3

R

R = reference database

S1

S2

S3

A

A = ancestral population

Figure 3.1: Visual representation of the difference between a forensic focussed (direct; left) and a population
genetics focussed (indirect; right) FST formulation. S1-3 signify three subpopulations (black circles), A and
R signify an ancestral population (dashed red circle) and a reference database (solid red circle) respectively,
while red arrows signify genetic distance.

The origins of the study subjects in this Chapter are recorded at a national level, without reference

to sub-national ethnic identities e.g. India is treated as a subpopulation of a broader South Asian population.

This ignores the genetic variation among different ethnic groups within India, which can be substantial. This

problem is most prevalent for countries that span large geographic areas e.g. native individuals from eastern

and western Russia (>9000 km separation) will be more genetically distinct from each other than native

individuals from northern Scotland and Southern England (965 km separation). As mentioned previously,
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it is appropriate to consider a separate FST for each possible X. If instead a single FST value is employed,

it should be taken from the upper tail of the distribution of FST across alternative contributors, to ensure

that the prosecution is not unduly favoured. As a result, posterior 97.5 percentile estimates of FST will be

utilised when considering forensic applications, while posterior median estimates will be utilised otherwise.

Two extensive studies estimating FST from human STR loci have previously been published, fo-

cussing on well-defined ethnic groups [Pemberton et al., 2013] and worldwide forensic databases [Silva et al.,

2012]. The data presented in this chapter, and that in Silva et al. [2012], mainly constitute large ethnically

mixed populations in contrast to Pemberton et al. [2013]. Here, FST is estimated at both within-continent

and between-continent scales, and is estimated using both inferred (indirect) and observed (direct) reference

populations. The estimates here provide posterior quantiles, and account for variable sample size through the

use of likelihood based estimation. They are directly relevant to forensic casework, and aid understanding

of human genetic variation at national, regional and continental scales in general populations.

IC1
IC3
IC4
IC5
IC6

Figure 3.2: Countries of origin of the individuals included in the study, coloured according to the population
that provides the best fit according to the indirect method (see text). White indicates countries represented
by fewer than five individuals.
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3.2 Dataset and munging

3.2.1 Database

The dataset used here includes the STR profiles of 7 121 individuals living in the UK or Eire, or applying

to migrate to the UK on the basis of a either relatedness to or a relationship with a UK resident, which will

be termed the DNA17 dataset. They are all genotyped by the same laboratory at up to 16 STR loci. The

individuals are self-identified into one of six populations: White (IC1 and IC2, with IC2 including darker-

skinned individuals of European origin), Black African/Caribbean (IC3), South Asian (IC4), East/South-

East Asian (IC5) or Middle Eastern/North African (IC6). They are further classified into subpopulations,

in most cases defined at the national level. The worldwide coverage of individuals is extensive (Figure 3.2),

but some large populations are not included, such as Japan and Indonesia, while Latin America only has

small sample sizes. The analyses here use only allele counts and not individual genotypes. In a few instances

a single allele was observed at a locus because the peak intensity was insufficient to confirm homozygote

status, so total allele counts are not always even integers (Table 3.1).

Observations IC1 IC2 IC3 IC4 IC5 IC6 Total
D3S1358 7013 162 5200 704 625 226 13930
TH01 6953 158 5177 694 624 226 13832
D21S11 7006 162 5198 704 624 225 13919
D18S51 6944 157 5180 704 626 226 13837
D16S539 6951 162 5183 694 626 226 13842
VWA 7013 162 5194 704 626 226 13925
D8S1179 7007 162 5200 704 626 226 13925
FGA 6988 162 5196 700 626 226 13898
D19S433 6836 158 5122 687 621 226 13650
D2S1338 6575 152 4995 667 620 220 13229
D22S1045 1822 56 3478 523 506 162 6547
D1S1656 1835 56 3509 528 511 162 6601
D10S1248 1823 56 3497 516 506 118 6516
D2S441 1808 56 3458 521 501 160 6504
D12S391 1869 56 3531 551 507 162 6676
SE33 376 4 1039 308 396 140 2263

Table 3.1: Number of alleles typed per locus and population.

3.2.2 Data munging

All subpopulations with > 40 individuals sampled were included in the analyses. Some subpopulations of

particular interest were also included despite having sample size < 40, while other subpopulations with small
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sample sizes were removed or merged. Study participants self-identified both population and subpopulation

labels, however, in some cases a different population classification was more appropriate for the identified

subpopulation, and was changed accordingly (see below). These decisions introduce some subjectivity into

the classification as no canonical classification scheme for human populations exists. Where possible, sub-

populations with small sample sizes were combined on the basis of the United Nations geo-scheme for the

relevant continent [United Nations Statistics Division, 2014].

IC1 and IC2

IC2 individuals from Europe were moved to IC1. Two national subpopulations were kept distinct, Eire and

Great Britain, while the remaining European subpopulations were merged according to the United Nations

geo-scheme for Europe [United Nations Statistics Division, 2014]:

Eastern Europe: Hungary, Moldova, Poland, Romania, Russia, Slovakia, Ukraine.

Northern Europe: Denmark, Latvia, Lithuania, Sweden.

Southern Europe: Albania, Bosnia, Croatia, Cyprus, Greece, Italy, Kosovo, Malta, Macedonia, Portugal,

Spain, Yugoslavia.

Western Europe: Belgium, France, Germany, Netherlands.

IC2 individuals from Argentina, Bolivia, Brazil, Columbia, Mexico and Venezuela were combined

(“Latin America”), as were IC1 individuals from Australia, New Zealand, and USA (“Anglo New World”).

Those with no subpopulation identified, and those from Jersey, Northern Ireland or South Africa, were

removed.

IC3

Six national subpopulations were kept distinct: Ghana, Jamaica, Kenya, Nigeria, Sierra Leone and Uganda.

The following subpopulations were created from mergers according to the United Nations geo-scheme for

Africa [United Nations Statistics Division, 2014], with Middle and Southern Africa combined as Cen-

tral/Southern Africa:

Other W Africa: Benin, Gambia, Guinea, Guinea-Bissau, Ivory Coast, Liberia, Mali, Togo.

Other C/S Africa: Angola, Chad, Congo, Cameroon, South Africa.

Other E Africa: Burundi, Ethiopia, Eritrea, Malawi, Rwanda, Sudan, Tanzania, Zambia, Zimbabwe.
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Other Caribbean: Barbados, Bermuda, Dominica, Guyana, Grenada, Monserrat, St Lucia, Virgin Islands,

Trinidad.

Individuals with missing subpopulation were included as ‘Unknown IC3’. Those with origin not in Africa or

the Caribbean were removed (Eire, GB, USA). Algeria, Egypt, Morocco and Somalia were all included with

IC6 (see Section 3.3.4).

IC4

Four national subpopulations were kept distinct: Afghanistan, Bangladesh, India, Pakistan. Individuals

with missing subpopulation, or if the subpopulation was Nepal or Sri Lanka, were included as ‘Unknown

IC4’. Mauritius was removed.

IC5

SE Asian subpopulations were merged (Cambodia, Indonesia, Philippines, Thailand, Vietnam). Mongolia

and South Korea were merged with the much larger China sample to form NE Asia. Fiji was removed.

IC6

Iran, Iraq, Somalia and Turkey were kept as separate national subpopulations. Other subpopulations were

merged into N Africa (Algeria, Egypt, Morocco) or Middle East (Jordan, Kuwait, Lebanon, Palestine, Qatar,

Syria, Yemen, UAE). Those from Georgia or with no subpopulation identified were removed. Afghanistan

was moved to IC4.

Databases of STR frequencies at 10 loci were previously collated by the UK Forensic Science Service

(FSS) [Foreman and Evett, 2001] in six populations with similar definitions to the DNA17 dataset presented

here: EA1 (Caucasian), EA2 (Mediterranean), EA3 (Afro-Caribbean), EA4 (South Asian), EA5 (East Asian)

and EA6 (Middle East/North Africa). These databases are small (<2 000 individuals combined) and do not

include subpopulation labels. EA5 and EA6 both have sample sizes varying over loci, with the average

sample size reported below. Based on the analyses presented in this chapter, the UK NDNAD chose to

include the following populations in the UK DNA17 allele database:

NDU1: UK Caucasian (analogous to IC1 here).

NDU2: African + Afro Caribbean (analogous to IC3 here).

NDU3: South Asian (analogous to IC4 here).
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NDU4: East Asian (analogous to IC5 here).

NDU6: African (subset of IC3 here).

NDU7: Afro Caribbean (subset of IC3 here).

EA1-6 were the reference databases used in most DNA forensics in the UK while the 10-locus SGM+

kit was standard in the UK, but since the adoption of the 17-locus kit NDU1-7 have become the reference

databases that are most commonly used. Note that the IC population codes refer to the 16-locus DNA17

dataset presented here, while the EA codes refer to the historic FSS 10-locus dataset.

Filtering out possible relatives

Pairwise allele sharing was measured within all subpopulations, counting only loci for which both individuals

were genotyped, only including all pairs of individuals that had at least four genotyped loci in common. If

> 75% of alleles were shared, the individual with the fewest loci typed was removed; this is analogous to

removing one of each pair of individuals suspected to be highly inbred first degree relatives. For subpopula-

tions with < 100 individuals, the threshold for removal was reduced to 50% allele sharing; this is analogous to

removing one of most pairs suspected to be first degree relatives. Both filtering thresholds will additionally

remove some anomalous individuals that arose through database errors i.e. some pairs were found with 100%

allele sharing which arose through duplicate entries of the same individual.

3.3 Estimation of FST

3.3.1 FST definition

There are various ways to define, estimate and interpret FST [Bhatia et al., 2013]. The original definition

[Wright, 1949] compared the variance of an allele fraction over subpopulations (S) to its variance in the total

population (T):

FST =
σ2
S

σ2
T

=
σ2
S

p(1− p) , (3.1)

where p denotes the population allele fraction. The total population used in this formulation is usually a

hypothetical ancestral population, from which observed subpopulations are assumed to have descended [Weir,

2001], as illustrated in Figure 3.1. However, in forensic work it is necessary to compare the subpopulation of

a suspect with the population from which the available allele frequency database has been surveyed. Thus
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the reference population allele fractions are observed rather than inferred [Balding and Nichols, 1997]. These

two approaches to estimation of FST will be referred to here as the indirect and direct methods, respectively.

Likelihood-based estimation of FST is used here instead of moment-based estimation [Bhatia et al.,

2013], as it provides high precision, correct accounting for sample size and interpretable intervals and quantiles

[Balding, 2003, 2005]. The maximum likelihood estimation of FST used here is based on the multinomial-

Dirichlet distribution [Mosimann, 1962], as opposed to a normal approximation to the multinomial proposed

by Weir and Hill [2002], as it does not assume a large sample size. Given a locus with k distinct alleles, the

multinomial-Dirichlet has k−1 parameters specifying the population allele fractions, which are replaced with

observed values in the direct method and are unknown parameters in the indirect method. The remaining

parameter ψ specifies the variance, with FST = 1/(1+ψ).

3.3.2 Direct method estimation

The multinomial-Dirichlet likelihood is used for allele counts in a subpopulation, with reference allele fractions

obtained from reference database counts, adjusted by adding a pseudocount of one for each allele in order to

avoid zero values. The direct analyses in this chapter only use the 10 loci in common between the DNA17

dataset and the historic FSS database, which are the loci with total allele counts > 104; D3S1358-D2S1338

(Table 3.1).

When using a uniform prior on FST , the likelihood curve for FST can then be interpreted as a

posterior density for FST . Another possibility for an uninformative prior on FST that was not investigated

here is Jeffreys prior. Previous work with small sample sizes [Balding and Nichols, 1997] suggested FST

typically takes values below 4%. To formulate an informative prior this information was incorporated into

a beta prior distribution for FST , with median 2.3% and 95% credible interval (CI) from 0.26% to 8.0%,

which was given a larger spread than suggested by Balding and Nichols [1997] due to consideration of more

diverse subpopulations in the DNA17 dataset than were included in the Balding and Nichols study.

To illustrate the effects of sample size, direct estimation under both the uniform and beta priors was

performed using different sample sizes. Multinomial allele counts were simulated based on allele fractions

that were Dirichlet-distributed, with means given by the EA4 allele fractions and ψ = 99 so that FST = 1%.

The 95% CI includes 1% at all sample sizes, and becomes tighter as the sample size is increased (Figure 3.3).

For small sample sizes, the beta prior leads to slightly smaller posterior interval widths than the uniform,

and the posterior median moves towards the prior value.

Figure 3.4 shows that the choice of prior has a noticeable effect on the posterior for Iran (n=12),
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Figure 3.3: Fst posterior 95% interval using: (red) a beta prior with median 2.3% and 95% CI (0.26%,8.0%);
(blue) the uniform prior. Sample sizes are shown on x-axis. Data were simulated to have FST = 1% (hori-
zontal line). The vertical lines indicate the 95% equal-tailed CI, and medians are indicated with horizontal
segments.

and less so for Afghanistan (n=42), in both cases the informative prior shifts the FST posterior distribution

to slightly higher values compared with the uniform prior. Of the 33 subpopulations studied here, 10 have

sample sizes ≤ Afghanistan, the majority of which are in IC6, while only Iran has a sample size ≤ 12. This

suggests that the results of FST estimation presented here will be relatively invariant to the choice of prior

distribution, with the most sensitive population being IC6.

3.3.3 Indirect method estimation and locus dependence

While the direct method is the most appropriate for forensic applications due to the role of the reference

database in FST estimation matching its role in computing DNA profile likelihoods, the indirect method

requires no such reference database. This allows 15 of the 16 available loci to be analysed using the indirect

method, as this method is not constrained by the historic 10-locus FSS databases. SE33 was not included

in the analyses presented here due to small sample sizes in the available DNA17 dataset (Table 3.1), which

would lead to poor estimation of FST at this locus.

In the indirect method, the reference population is not observed, but is assumed to be a hypothetical

ancestral population from which two or more observed subpopulations have descended independently (see

Figure 3.1). The BayesFST software [Beaumont and Balding, 2004] implementation of the indirect method
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Figure 3.4: FST posterior densities (solid lines) using the direct method, given a uniform prior (blue) and an
informative beta prior (red). Dotted red lines show the beta prior density. The subpopulations analysed are
Iran (left) and Afghanistan (right), with EA6 (Middle East/North Africa) and EA4 (South Asia) respectively
as reference populations.

was used, which samples from the posterior distribution of FST in each subpopulation given the allele counts

using a Markov Chain Monte Carlo method. BayesFST assigns a jointly uniform prior distribution to the

ancestral allele fractions at each locus, using the model:

F i,jST =
eai+bj

1 + eai+bj
(3.2)

where ai and bj denote locus and population effects, respectively. All inferences reported here are based on

Locus Percentile Locus Percentile
2.5 97.5 2.5 97.5

D3 -1.72 -0.2 D19 -0.62 0.62
TH01 0.11 1.58 D2 -0.59 0.62
D21 -0.85 0.45 D22 -0.06 1.32
D18 -0.79 0.38 D1 -0.7 0.52
D16 -1.3 0.15 D10 -0.87 0.6
vWA -0.93 0.42 D2 -0.21 1.15
D8 -0.73 0.6 D12 -0.71 0.56
FGA -1.04 0.23

Table 3.2: Posterior 95% intervals for locus effect parameters using the indirect method. The analysis used
all 7 121 individuals with IC1 through IC6 treated as six subpopulations.
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150 000 posterior samples, with 7 500 “burn-in” samples performed beforehand which are then discarded.

A pre-analysis was performed to investigate the variation of FST estimates across loci, treating IC1

through IC6 as six subpopulations of the hypothetical global ancestral population. Each subpopulation

parameter bj was assigned an N(−3, 1.8) prior, while the locus parameters ai were assigned an N(0,1) prior.

The resulting prior distribution for FST using (3.2) has a prior median 4.7%, with 95% CI from 0.02% to

92%, which is a very loose prior spanning almost the whole range of possible values for FST . Table 3.2 shows

that the posterior 95% CI for the ai include zero for 13 of the 15 loci (D21-D12), while D3 has a posterior

95% CI < 0 and TH01 has a posterior 95% CI > 0. This implies that D3 has lower FST values than the

whole profile average, TH01 has higher FST values than the whole profile average, while all other loci do

not have FST values significantly different to the whole profile average. In view of this limited evidence for

locus heterogeneity, the locus effect parameter was set close to zero for all subsequent analyses in order to

estimate an average FST over loci, allowing for greater comparability across analyses. The implied prior

median with a1...15 ≈ 0 is then 4.7%, with 95% CI from 0.1% to 63%, a tighter prior than that including

locus parameters in full.

All 15-locus analyses were repeated with only the 10 loci used in the direct analyses; the resulting

inferences were similar with each, but on average more precise with 15 loci (10-locus results not shown here).

Thus, the differences reported below between direct and indirect FST values for a subpopulation are almost

entirely due to the different reference population, rather than the different number of loci used.

3.3.4 Best population fit

Each subpopulation defined above was assigned to the FSS database giving the “best fit” (lowest median FST

under the direct method), for both direct and indirect method analyses below. The majority of allocations

were as expected: most European subpopulations fit best with EA1, most African and Caribbean subpop-

ulations with EA3, all South Asian subpopulations fit best with EA4, both East Asian subpopulations fit

best with EA5 and most Arab subpopulations fit best with EA6. Three subpopulations close to the Middle

East fit EA6 equally or slightly better than their nominal population: Southern Europe (EA1), Afghanistan

(EA4) and Kenya (EA3). The nominal classification was retained in each case.

One discrepancy was much larger: Somalia fit better with EA6 (FST=1.5%) than with the nominal

EA3 (FST=2.2%); Somalia was subsequently included with IC6 rather than IC3. Although Somalia borders

Kenya (EA3), it is also geographically close to the Arab world, and there have historically been many

links. Note that Kenya also fits EA6 better than EA3, suggesting genetic links reaching through Somalia
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IC1 n Direct Indirect
2.5 50 97.5 2.5 50 97.5

Eire 1949 0.1 0.2 0.2 0.0 0.0 0.1
Great Britain 1416 0.1 0.1 0.1 0.0 0.0 0.0
Eastern Europe 61 0.2 0.5 1.0 0.1 0.3 0.7
Northern Europe 45 0.0 0.3 0.8 0.0 0.2 0.5
Southern Europe 60 0.0 0.2 0.5 0.0 0.1 0.3
Western Europe 13 0.1 0.7 2.1 0.0 0.5 1.8
Anglo New World 13 0.1 0.5 1.7 0.0 0.3 1.4
Latin America 25 0.5 1.3 2.4 0.6 1.3 2.4

Table 3.3: 2.5, 50 and 97.5 posterior percentiles of FST (expressed as %) for EA1. Subpopulations were
compared both individually with the reference population EA1 (direct method, 10 loci) and analysed jointly
to infer ancestral allele fractions (indirect method, 15 loci). n denotes the sample size (number of individuals).

and extending as far as Kenya, but the difference was smaller, so the nominal classification for Kenya was

retained. Both mitochondrial [Mikkelsen et al., 2012] and Y-chromosome [Sanchez et al., 2005] studies

have suggested a strong Arab influence in Somali genetics, although their highest similarity is usually with

neighbouring Eastern Ethiopians and Northern Kenyans. HLA typing [Mohamoud, 2006] suggests that

Somalis are more similar to Arabs than to Sub-Saharan Africans, while admixture mapping estimates the

Eurasian ancestry of Somalis at roughly 38% [Pickrell et al., 2014], supporting the low FST estimate for

Somalia with the EA6 database.

3.4 EA1 FST estimates

Compared to the EA1 reference population, all European subpopulations, except Western Europe, have a

posterior 97.5 percentile FST estimate < 1% (Table 3.3). All subpopulations, including Europe, have a

posterior median FST estimate < 1%, which suggests that the high 97.5 percentile estimate for Western

Europe is due to a small sample size rather than true genetic dissimilarity. Anglo New World has posterior

97.5 percentile FST estimates slightly lower than Western Europe, but the small sample size of each, along

with low median FST estimates suggest that each fits the IC1 population well. Southern Europe has a low FST

estimate, supporting a merger of European-origin IC2 individuals with the IC1 population. Conversely, Latin

America has both the highest median and 97.5 percentile FST estimates; Latin Americans are known to be

admixed between native Amerindians, Europeans and Africans [Ruiz-Linares et al., 2014, Salzano and Sans,

2014, Moreno-Estrada et al., 2013], with African ancestry largely localised to the Caribbean islands [Moreno-

Estrada et al., 2013] and some coastal regions of South America [Ruiz-Linares et al., 2014]. Subsequently,

IC2 might reasonably be redefined as a Latin American population with predominantly European ancestry,
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IC3 n Direct Indirect
2.5 50 97.5 2.5 50 97.5

Ghana 214 0.8 1.1 1.6 0.2 0.3 0.5
Jamaica 166 0.5 0.7 1.0 0.0 0.1 0.2
Kenya 51 0.7 1.2 1.9 0.8 1.3 1.9
Nigeria 444 0.9 1.2 1.5 0.2 0.3 0.3
Sierra Leone 41 0.7 1.3 2.2 0.1 0.3 0.8
Uganda 63 0.3 0.5 1.0 0.0 0.2 0.4
Unknown IC3 864 0.4 0.5 0.7 0.0 0.0 0.0
Other Caribbean 20 0.5 1.5 2.9 0.1 0.4 1.3
Other C/S Africa 55 0.3 0.6 1.1 0.0 0.1 0.3
Other E Africa 66 0.3 0.7 1.1 0.0 0.1 0.4
Other W Africa 48 0.1 0.5 1.0 0.0 0.1 0.3

Table 3.4: 2.5, 50 and 97.5 posterior percentiles of FST (expressed as %) for EA3. Subpopulations were
compared both individually with the reference population EA3 (direct method, 10 loci) and analysed jointly
to infer ancestral allele fractions (indirect method, 15 loci). n denotes the sample size (number of individuals).

as opposed to individuals with primarily Amerindian ancestry who would require a separate database that

would be rarely utilised in the UK, or individuals with primarily African ancestry that may fit better in the

IC3 population.

Lower FST estimates are obtained with the indirect method than with the direct method for the

majority of subpopulations, which is due to inferred ancestral allele probabilities being towards the centre

of the subpopulation values, while the direct method compares to the original EA1 database compiled by

the FSS which is likely biased towards individuals of British ancestry. Conversely, Latin American FST

estimates remain almost unchanged, as the ancestral allele probability inferences are dominated by the

European subpopulations, which comprise 99.3% of the total sample size in the IC1 population.

3.5 EA3 FST estimates

Using the direct method, the African national subpopulations of Ghana, Kenya, Nigeria, and Sierra Leone

have higher FST estimates than the African mixed subpopulations of Unknown IC3, East, West and Central-

Southern Africa. Conversely, the FST estimate for the Caribbean mixed subpopulation Other Caribbean is

much higher than for the Caribbean national subpopulation Jamaica, while simultaneously being high in

relation to all other subpopulations. Jamaicans have a predominantly African origin [Caribbean Community

Capacity Development Programme, 2009], and there are approximately 800 000 people of Jamaican descent

living in the UK [International Organisation for Migration, 2007], which is close to half the UK population

categorised as black [Office for National Statistics, 2011], therefore the EA3 database may be expected to
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IC4 n Direct Indirect
2.5 50 97.5 2.5 50 97.5

Afghanistan 47 0.1 0.3 0.9 0.1 0.4 0.9
Bangladesh 53 0.1 0.4 0.9 0.0 0.1 0.4
India 49 0.0 0.3 0.8 0.0 0.1 0.4
Pakistan 60 0.0 0.2 0.5 0.0 0.2 0.5
Unknown IC4 76 0.0 0.2 0.5 0.0 0.1 0.2

Table 3.5: 2.5, 50 and 97.5 posterior percentiles of FST (expressed as %) for EA4. Subpopulations were
compared both individually with the reference population EA4 (direct method, 10 loci) and analysed jointly
to infer ancestral allele fractions (indirect method, 15 loci). n denotes the sample size (number of individuals).

include a large number of Jamaicans, explaining the low FST estimate for Jamaica relative to the EA3

database.

Indirect estimation (Table 3.4b) gives results divergent to the direct method. For the majority of

subpopulations the FST estimate is greatly reduced, except for Kenya which is geographically remote from

the majority of subpopulations, which are predominantly West African or Caribbean. In Section 3.3.4 it

was noted that Kenya fits almost equally well with both EA3 and EA6 using direct estimation, and in fact

fits slightly better with EA6, suggesting some genetic influence from the Arab world, which is supported by

Somalia, a neighbour of Kenya, being included with IC6 rather than IC3. Jamaica has a much lower FST

estimate with indirect estimation, which is supported by results from Benn-Torres et al. [2008] who estimated

West African admixture of Jamaicans at 84.4%. The large 97.5 percentile FST estimate for Other Caribbean

may be due to small sample size as the median estimate is more in line with other subpopulations. This is

once again supported by West African admixture estimates in individuals from Barbados and StṪhomas of

89.6% and 86.8% respectively [Benn-Torres et al., 2008] and individuals from Haiti being estimated as having

majority African ancestry [Moreno-Estrada et al., 2013]. However, individuals from the Dominican Republic

and Puerto Rico are estimated to have majority European ancestry [Moreno-Estrada et al., 2013], which may

suggest that the elevated FST estimate for the mixed Caribbean subpopulation compared to the ancestral

African population investigated here may be due to the conflicting ancestries of different Caribbean islands,

rather than an artefact of small sample size; the Other Caribbean subpopulation comprises nine separate

Caribbean islands.

3.6 EA4, EA5 and EA6 FST estimates

For IC4, the FST estimates are all low for both direct and indirect methods, with no outliers (Table 3.5). The

FST estimates for India and Bangladesh are much lower for the indirect than the direct method, suggesting
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IC5 n Direct Indirect
2.5 50 97.5 2.5 50 97.5

NE Asia 260 0.1 0.2 0.3 0.1 0.4 0.8
SE Asia 44 0.0 0.2 0.7 0.0 0.1 0.4

Table 3.6: 2.5, 50 and 97.5 posterior percentiles of FST (expressed as %) for EA5. Subpopulations were
compared both individually with the reference population EA5 (direct method, 10 loci) and analysed jointly
to infer ancestral allele fractions (indirect method, 15 loci). n denotes the sample size (number of individuals).

IC6 n Direct Indirect
2.5 50 97.5 2.5 50 97.5

Iran 12 0.1 0.9 2.4 0.1 0.9 2.7
Iraq 28 0.0 0.2 0.7 0.0 0.2 0.7
Somalia 494 1.1 1.3 1.7 1.2 1.6 2.1
Turkey 20 0.1 0.5 1.6 0.2 0.9 2.1
Middle East 24 0.1 0.7 1.8 0.1 0.5 1.6
N Africa 26 0.2 0.7 1.7 0.1 0.6 1.5

Table 3.7: 2.5, 50 and 97.5 posterior percentiles of FST (expressed as %) for EA6. Subpopulations were
compared both individually with the reference population EA6 (direct method, 10 loci) and analysed jointly
to infer ancestral allele fractions (indirect method, 15 loci). n denotes the sample size (number of individuals).

that the EA4 database is skewed towards Pakistani individuals; Pakistanis are the second most populous

South Asian subpopulation in the UK [Office for National Statistics, 2011], behind Indians and ahead of

Bangladeshis, making this plausible. This is supported by increasing direct method FST estimates with

increasing geographic distance from Pakistan. Conversely, FST estimates for IC4 using the indirect method

increase with increasing distance from India/Bangladesh.

Similar to IC4, the FST estimates for IC5 are low for both methods (Table 3.6). The FST estimate

for NE Asia is higher than that for SE Asia using the direct method, but lower using the direct method.

This suggests the EA5 database largely consists of individuals from NE Asia, with the NE Asian sample in

this study being majority Chinese. This is likely as the 2011 UK Census lists Chinese as a separate ethnic

group, but all other East Asian subpopulations are combined in “Other Asia” [Office for National Statistics,

2011] suggesting that the Chinese population of the UK is considerably larger than that of any other East

Asian country.

Most IC6 subpopulations have low sample sizes, so posterior 97.5 percentiles will be elevated and

show a high variance. Therefore the posterior median will be discussed here rather than the posterior 97.5

percentile. Iraq has low FST estimates, lower than its geographic neighbour Iran (Table 3.7). Somalia

has the largest FST estimates of all subpopulations using both methods, unsurprisingly. The direct and

indirect methods give similar estimates for most subpopulations, however, Turkey has a noticeably larger

FST estimate using the indirect method, perhaps indicating that Turkish individuals are well represented in
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Fringe Reference
EA1 EA3 EA4 EA5 EA6

Afghanistan 1.17 2.90 0.78 1.87 0.78
Kenya 2.32 1.39 2.51 2.32 1.36
Southern Europe 0.30 2.99 1.20 2.03 0.34
Unknown IC4 1.68 2.80 0.62 1.17 0.72

Table 3.8: Posterior median FST (%) for fringe subpopulations. Fringe subpopulations are those for which
another reference population gives a median FST estimate using the direct method within 0.001 of the lowest
(best fit) value.

the EA6 database. The indirect method FST estimates show increasing FST with increasing distance away

from Iraq.

3.7 Fringe regions

“Fringe” subpopulations are those that have similar affinity to two populations (difference in median FST

< 0.001). These fringes are found at the boundaries of the defined continental-scale populations (Table

3.8) reflecting a genetic cline; an overall smooth change in allele frequencies with geography [Ramachandran

et al., 2005]. Logically, individuals from Bangladesh and Turkey will be more genetically distinct than

individuals from Afghanistan and Iran; the first pair may only fit well in their nominal population, while

the latter two may fit almost equally well in each other’s nominal population. In the DNA17 dataset

presented here, Afghanistan fits in IC4 and IC6 similarly well, S Europe fits IC1 and IC6 similarly well,

and Kenya fits IC3 and IC6 similarly well, with all three being on the geographic boundary between the

two population designations. These results suggest a relatively low differentiation between IC6 and its

surrounding populations, IC1, IC3 and IC4; a global study of admixture and migration between well-defined

ethnic groups [Pickrell and Pritchard, 2012] supports the low differentiation between IC6 and both IC1 and

IC3 through complex signals of admixture and migration between IC6 and the other two populations, while

low differentiation between IC4, IC6 and IC1 is directly inferred through low drift separating the three

populations. Only IC5 is not linked to other populations through a fringe subpopulation, perhaps due to

the mountains separating China from South Asia, and its geographical remoteness from IC1 and IC3. This

agrees with a previous report that East Asian populations are distinct from those of South Asia, but are

close to South East Asian populations [Consortium et al., 2009], and IC5 ethnic groups being significantly

drifted away from IC4 ethnic groups [Pickrell and Pritchard, 2012] with little migration between the two.
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Global n Reference
EA1 EA3 EA4 EA5 EA6 Indirect

IC1 3582 0.4 3.1 1.9 1.9 0.9 2.7
IC3 2032 1.7 0.7 1.7 1.4 1.1 1.0
IC4 285 1.4 3.1 0.7 1.3 0.8 2.3
IC5 304 3.1 4.2 2.4 0.5 2.0 3.3
IC6 604 1.8 1.7 1.9 1.7 0.9 1.4

Table 3.9: Posterior median FST (%) for inter-population comparisons. Populations IC1-6 were compared
to each reference population in turn using the direct method. The indirect method was used to compare
each population to a hypothetical global ancestral population.

3.8 Inter-population comparisons

Continental-scale sample populations are compared to continental-scale reference populations (direct) or a

global-scale inferred ancestral population (indirect) here, as opposed to the largely national-scale subpopu-

lation comparisons with continental-scale reference populations in Sections 3.4 to 3.7. Each column of Table

3.9 shows a different FST analysis of the five IC populations, using an EA database as the reference database

in the direct method (columns 3-7), or using the indirect method (column 8).

For the direct method, each IC database gives the lowest FST estimate with its corresponding EA

database, supporting a reasonable consistency of definitions between IC and EA databases. The highest FST

value for IC1, IC4 and IC5 are all obtained relative to EA3, suggesting higher divergence from EA3 than

other populations. This reflects the increased genetic diversity seen in Africa compared to other populations

due to sequential founder effects as humans spread from Africa, and is echoed in [Pickrell and Pritchard,

2012], who found the substantially larger drift between African ethnic groups and non-African ethnic groups

than within the non-African ethnic groups. Conversely, looking down the columns of Table 3.9, IC5 shows

the highest FST value for each EA database except EA5, indicating that IC5 is genetically distinct from all

other populations, as seen in Pickrell and Pritchard [2012]. The IC6 database shows similar FST values with

respect to all four EA databases other than EA6, with a large influence from the Somalian subpopulation.

Note, the IC5 database shows the highest FST estimates compared to each EA database, providing further

evidence that the IC5 population is distinct from all other tested populations.

Using indirect estimation, IC3 and IC6 show the lowest FST values, increasing through IC4, IC1 and

IC5 in turn, corresponding to an inferred ancestral human population similar to that of modern North-East

Africa [Pemberton et al., 2013]. This recapitulates the pattern seen in Pickrell and Pritchard [2012], with

the genetic similarity of IC3 and IC6 being likely due to recent migrations, which STR data is well placed

to determine.

71



3.9 Precision
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Figure 3.5: FST posterior 95% intervals (range) against log subpopulation sample size (n) for the direct
method (left) and the indirect method (right). The fitted line is a linear regression with n as a predictor
and log posterior 95% interval as a response.

Good precision (tight 95% posterior intervals) of FST estimates has been obtained here, despite only

examining 10 or 15 STR loci; this was possible due to the multi-allelic nature of STRs, and large sample

sizes for many of the investigated subpopulations. This is demonstrated by the fact that the precision of FST

estimates increases as the sample size of a subpopulation increases (Figure 3.5). However, FST estimates

depend sensitively on the choice of reference population, in particular the choice of a hypothetical ancestral

population or a population database, which are usual practice in forensic genetics and population genetics

respectively.

3.10 Comparison with published estimates

Silva et al. [2012] estimated global FST separately from a collection of worldwide forensic STR databases and

from the non-forensic Human Genome Diversity Project (HGDP) dataset, with FST estimates of 2.3% and

5.3% from the forensic and non-forensic datasets respectively. The forensic estimate is similar to the inter-

population estimates presented here (Table 3.9), however, the non-forensic estimate is considerably larger.

Silva et al. suggest that this discrepancy is because STR markers are chosen for forensic use in part because
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Figure 3.6: First and second principal components (PCs) of a principal components analysis of the individual
genotypes of the 7 121 individuals that comprise the DNA17 dataset, at the 10 SGM+ loci. Crosses indicate
individuals, filled circles indicate mean principal components for each population, coloured lines indicate
density contours for each population, while colours indicate the population.

they have low differentiation between populations. This can be seen in a principal components analysis

(PCA), Figure 3.6, where there is little differentiation between the different populations investigated. The

largest differentiation is between IC1 and IC3, which may be due to these two populations having the largest

sample size. Silva et al. also demonstrate, however, that RST [Slatkin, 1995], an FST analogue for STRs that

assumes a stepwise mutation model, is decreased by selecting high heterozygosity markers; forensic markers

that are currently in use have also been selected in part to maximise heterozygosity. Forensic surveys for

generating STR databases tend to sample individuals from large ethnically diverse populations, while the

HGDP dataset, and population genetics datasets in general, tend to sample individuals from small ethnically

distinct populations; these different strategies and aims may explain the different FST estimates reported by

Silva et al..

Both the FST estimates of Silva et al., and the FST estimates presented in this chapter, are consid-

erably lower than those presented by Nelis et al. [2009], who estimate continental genetic distance between

Africa, Asia and Europe using the HapMap SNP database (HapMap 2), and obtained FST estimates rang-

ing from 11% (European/Asian comparison) to 19% (African/Asian comparison). STR mutations are not

uniform; expansion mutations are favoured in short alleles [Xu et al., 2000], while contraction mutations are

favoured in long alleles [Sibly et al., 2003, Dupuy et al., 2004, Lu et al., 2012], leading to relatively stable
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allele fractions across populations due to the high mutation rate seen in STRs [Weber and Wong, 1993].

This may explain the higher FST estimates obtained from SNP data than from STR data. Excoffier and

Hamilton [2003] demonstrated that this discrepancy can be removed by modelling the stepwise mutation

seen in STRs; the probability of an allele mutating to repeat unit lengths other than x-1 or x+1 is negligible.

However, the broad pattern of variation is similar for both STRs and SNPs [Ramachandran et al., 2005,

Pemberton et al., 2013].

3.11 Guidelines for forensic practice

From the results presented here, an FST ≤ 3% should be appropriate for a wide variety of forensic calculations,

involving any of the populations investigated here. The 97.5 posterior percentile for FST is ≤ 3% relative

to the best fit population for all subpopulations tested here; this agrees with more limited results that have

been previously published [Balding and Nichols, 1997, Gill et al., 2003]. Low values may be applicable in

some situations, e.g. FST = 1% may be acceptable for Asians (both South and East), however, FST = 3% is

less susceptible to the incorrect assignment of the reference population for an unknown contributor, which

may include X under Hd; this is discussed further in Chapter 4. With appropriate case circumstances, it

may be possible to tailor the FST value used to the case at hand, based on the subpopulation estimates

presented here. For example, a lower FST value may be appropriate for Jamaican alternative contributors

than would be appropriate for an alternative contributor from another Caribbean island.

3.11.1 Future work

Cowell [2016] have recently published work incorporating both an FST adjustment and uncertainty in pj to

the calculation of forensic likelihoods, giving pj a Dirichlet prior. Such uncertainty in pj may have an effect

on the FST estimates under the direct method investigated here, so more accurate estimates of FST may be

obtained by incorporating a Dirichlet prior on the pj , similar to Cowell [2016], rather than assuming the pj

as known here.
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Chapter 4

Choice of population database for
forensic DNA profile analysis

Work in this chapter has been published in Steele and Balding [2014a], see Appendix B. A model for forensic

likelihoods that allows for different contributors to come from different populations without dropout or

dropin was developed and coded by me, and was adapted from the likeLTD discrete model developed by

Prof. David Balding. All simulations and analyses were performed by me. The dataset was collected and

provided by Dr. Denise Syndercombe Court (see Chapter 3).

4.1 Effect of database choice on the WoE

As discussed in Chapters 1 and 3, the misassignment of population database for any unknown contributor

to a CSP can have an important impact on the WoE. The rarity of a CSP allele is directly linked to the

WoE against a Q who possesses the allele. Returning to the scenario that generated (1.6), where C =ABC,

GQ =AB, GK =AC, both at good template, with LR=1/(2pApB + p2B + 2pBpC) if shared ancestry between

Q and X is ignored. If a population allele probability database shown in row 1 of Table 4.1 is used, the

WoE is 0.7 bans, and the most likely GX is BC. However, if a different database is used, in which allele B is

now rare in the population, pB = 0.01, then the WoE against Q increases considerably. The WoE increases

because Q matches a CSP allele that is rare in the chosen population, so observing that allele in X under

Hd becomes a priori unlikely; all three GX probabilities drop substantially as they all require X to have a B

allele (Table 4.1, second row). The BC genotype is still the most likely for X, but the AB genotype is now

more likely than the BB genotype. Note that the B allele here cannot be explained by K, and therefore must

be explained by X (all possible genotypes for X include the B allele), so any reduction in pB will increase

the WoE against Q. If instead K is able to explain the rare allele, the WoE remains similar to that evaluated

75



FST pA pB pC Pr(GX=AB) Pr(GX=BB) Pr(GX=BC) WoE

0.00
0.10 0.20 0.30 4.0e-2 4.0e-2 1.2e-1 0.7
0.10 0.01 0.30 2.0e-3 1.0e-4 6.0e-3 2.1
0.01 0.20 0.30 4.0e-3 4.0e-2 1.2e-1 0.8

0.03
0.10 0.20 0.30 5.4e-2 4.7e-2 1.2e-1 0.7
0.10 0.01 0.30 9.5e-3 1.5e-3 2.2e-2 1.5
0.01 0.20 0.30 1.7e-2 4.7e-2 1.2e-1 0.7

Table 4.1: WoE and genotype probabilities for X (GX) for a good-template CSP of observed alleles ABC,
with a queried contributor with genotype AB and a known contributor with genotype AC.

using the database with no rare allele (Table 4.1, third row). The probability of the GX that includes the

rare allele is once again decreased, however, the remaining two genotype probabilities remain unchanged. In

this situation X is most likely to be BC, with K explaining the remaining rare A allele in the CSP.

When possible distant relatedness between Q and X is taken into account by setting FST=0.03, the

WoE is unaffected when both of the alleles of Q are common (Table 4.1, fourth row); the probabilities of

genotypes GX=AB and GX=BB have increased slightly, but the probability of GX=BC remains unchanged.

However, when one of the alleles of Q is rare the WoE is reduced significantly (fifth row); the probability

of all three genotypes under Hd have been increased, as pB is increased through the FST adjustment. This

allows for both Q and X to match the CSP, even if Q has not contributed to the CSP, and hence the WoE

against Q should be reduced accordingly. When the rare allele can be explained by K, the WoE is reduced

by just a tenth of a ban (deciban, sixth row); once again only the probabilities of GX=AB and GX=BB have

increased.

The choice of database also affects the WoE through Pr(GU ), since both X and U are drawn from

the population. When evaluating the WoE the most relevant database will be that which is most appropriate

for the population of X, as X is assumed to be the true source of DNA. Without a U , this database choice is

unnecessary under Hp, as X is assumed to be Q and GQ is known. This leaves the question of what database

is most appropriate for X; Balding and Nichols [1994] argue for using the database of Q even if the ancestry

of X is unknown, while many other authors have stated that the most appropriate database for Q may not

be the most appropriate for X [National Research Council, 1996, Foreman et al., 1998]. Balding and Nichols

support their argument through a size-bias effect; once GQ has been observed then Pr(GX = GQ) increases

if X is assumed to come from the same population as Q but not if X is assumed to come from a different

population.
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# populations # U # permutations (Hd)

3
0 3
1 9
2 27

5
0 5
1 25
2 125

7
0 7
1 49
2 343

Table 4.2: Number of database permutations for unknown contributors to a CSP under Hd. The number of
permutations is given by nu where n is the number of population databases, and u is the number of unknown
contributors including X.

4.2 Evaluation with all possible databases

Currently, common practice when the ancestry of X is unknown is to evaluate the WoE with multiple

population databases for X, and to choose the database that returns the minimum WoE in the interest of

being conservative. However, it should not be necessary to favour defendants in such an arbitrary way, that

may have no bearing on the realities of the case. As an illustrative example, Q is Caucasian and the lowest

WoE is obtained with a database of Vietnamese individuals. It may be reasonable to report the Vietnamese

WoE if the population in the area local to the crime includes many Vietnamese individuals, however, if the

local area contains few, if any, Vietnamese individuals then it may be unhelpful to present the Vietnamese

WoE to the court. For instance reporting a Vietnamese WoE may be appropriate if the crime was committed

in London, a cosmopolitan city, but would not be appropriate if the crime was committed in rural Devon.

The world’s population can be categorised in a large number of ways; it is neither possible nor desirable to

enumerate the WoE for all population designations in order to report the smallest WoE. However, reasonable

population choices should be considered based on the available knowledge about the nature and location of

the crime. Approximations that favour the defence may be desirable to simplify the necessary analyses and

to avoid courtroom challenges, as the number of reasonable population choices can still be large. One such

approximation, investigated in this chapter, is to assume that X and all other hypothesised Us come from

the population that is most appropriate for Q.

The number of permutations of population databases for unknown contributors is not prohibitive

for few U or for few possible databases (Table 4.2), however, as either increases the number of possible

permutations quickly becomes prohibitive. Also, the computational effort of a single evaluation increases

with the number of unknown contributors, meaning that the overall computational effort to consider multiple
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databases for each unprofiled contributor can be restrictive. Therefore, the possibility of evaluating a single

WoE, assuming the database of Q for all unknowns, becomes attractive given that it can be demonstrated

that it does not favour the prosecution. Additionally, an FST adjustment, as discussed in Chapters 1 and 3,

is necessary if Q and X are assumed to come from the same population [Balding and Nichols, 1994]. Chapter

3 demonstrated that an FST value of 3% is greater than the FST estimates for all tested subpopulations

[Steele et al., 2014b], and should therefore be conservative in all scenarios covered in that study. As discussed

in Chapter 1, the FST adjustment increases the population probability of alleles observed in Q, and therefore

decreases the population probability of alleles not observed in Q, essentially implementing the size-bias effect

into the calculation of the WoE.

4.3 Effect of FST on mixtures

For contributors to a CSP other than Q/X, utilising an FST=0.03 should be conservative. When a K is

hypothesised the problem simplifies to assigning the correct database for X, because the alleles of K are not

drawn from a population. Conversely, when a U is assumed in a mixture, the population allele probability is

important for both Pr(GX) and for Pr(GU ), so it is necessary to check that assigning a population database

most relevant to Q does not adversely affect the WoE when such an assignment is in fact incorrect for any

U and/or X. Note that the FST adjustment utilised in the heuristic only increases the population allele

probability for any alleles of Q, increasing the probability that both X and U share any allele with Q,

which supports the defence case more than with no FST adjustment, meaning that the FST adjustment is

conservative (errs on the side of supporting Hd).

While favouring the defence through an FST adjustment is desirable, it is not possible to guarantee

that a proposed WoE evaluation will be conservative compared to all possible alternative evaluations. Instead,

it should be sufficient to demonstrate that the majority of evaluations are conservative with the heuristic

compared to a set of alternative evaluations. When a database for an unknown contributor’s population

allele probabilities is used that differs from the database most relevant to Q, due to some other evidence

about the ethnicity of X, perhaps colour CCTV footage of some exposed skin or ancestry inference from a

SNP panel [Yang et al., 2005, Phillips et al., 2007, Halder et al., 2008, Jia et al., 2014], assumed coancestry

between Q and X is no longer applicable, so FST=0 may be most appropriate. However, distant populations

share some genetic background, so a small FST of 0.01 may be more appropriate to account for this very

distant shared ancestry across populations [Balding, 2005]. Such an FST value will introduce a small bias in

favour of the defence proposition, and will allow for the database population to differ from the population
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that X originates from slightly. However, here an FST=0 will be used in such a case, as the study design

already incorporates a slight bias towards the defence, through comparing to the minimum WoE over a set

of alternative database choices.

4.4 Unknown ancestry of Q

The true ancestry of Q may be unknown, for example if Q does not report their own ancestry or if Q is

adopted and does not know his ancestry. Similarly, the true ancestry of Q may be misassigned, for example if

Q is impersonating another individual, his ancestry is ambiguous such as through admixture, or his ancestry

has been misreported by the reporting police officer based on physical appearance. Q may also be of some

ancestry that is poorly represented in any available database, such as a native Amerindian individual arrested

in the UK. In such cases, observing an allele in Q does not make it more likely to observe that allele in the

database that has been assigned to Q. This does not match the adjustment that would be incorporated

through FST , so the WoE would be adversely impacted, however, the FST value used is already generous,

so the impact of population misassignment should be small, and within the range of the FST adjustment

allowing for misassignment of databases.

4.5 Databases and modelling choices

Frequency data was used at 16 STR loci for five UK populations, which are identical to those used in

Chapter 3: Caucasian (IC1), African and African Caribbean (IC3), South Asian (IC4), East Asian (IC5)

and Middle Eastern (IC6), Table 4.3. See Chapter 3 for a full description of the dataset. These data were

used to simulate 16-locus profiles which were simulated at both Hardy Weinberg equilibrium and linkage

equilibrium. Dropout and dropin were not simulated here, and were not modelled when evaluating the WoE.

The WoE was evaluated using the likelihood ratio framework [Gill et al., 2006], see Chapter 1 for

details. All hypothesis pairs include Q as a contributor under Hp, and replace Q with an unrelated X under

Hd. An FST adjustment [Balding, 2005] to the population allele probabilities that match Q was implemented

whenever the most appropriate database for Q was assumed for X as well; FST = 0.03 is used when the

adjustment is applied, and FST = 0 is used otherwise. A sampling adjustment of one was added to the

database counts of alleles of Q (see Chapter 1), which avoids underestimating the population probabilities

of rare alleles [Balding, 1995].
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Allele counts IC1 IC3 IC4 IC5 IC6
D3S1358 6878 3941 520 599 1202
TH01 6816 3918 514 598 1202
D21S11 6870 3941 520 599 1199
D18S51 6808 3930 520 600 1195
D16S539 6818 3927 514 600 1199
VWA 6877 3936 520 600 1201
D8S1179 6871 3941 520 600 1202
FGA 6853 3938 516 600 1201
D19S433 6702 3868 507 595 1197
D2S1338 6443 3758 491 594 1176
D22S1045 1816 2482 421 498 954
D1S1656 1827 2508 426 504 959
D10S1248 1815 2499 416 500 912
D2S441 1800 2473 420 493 943
D12S391 1857 2543 437 499 945
SE33 368 872 237 394 268

Table 4.3: Number of allele observations at each locus for each population database: Caucasian (IC1),
Afro-Caribbean (IC3), South Asian (IC4), East Asian (IC5) and Middle Eastern (IC6)

4.6 Single-contributor CSPs

4.6.1 Matching database

Initially 10,000 single contributor CSPs were simulated from each database in turn, leading to 50,000 profiles

in total. The WoE for every simulated CSP was calculated using each database in turn for the population

allele probabilities for X, using hypotheses of the form:

Hp: Q

Hd: X.

The minimum WoE over the four incorrect database assignments was subtracted from the heuristic WoE,

which correctly assumes the database of Q as that for X using FST = 0.03; a negative result indicates that

the heuristic is conservative compared to all alternatives tested, regardless of the true ancestry of X.

With probability > 0.999, the heuristic returns a lower WoE than any of the four alternative database

assignments for X(Figure 4.1), indicating that the heuristic is conservative in the vast majority of cases.

Two observations of non-conservative WoEs using the heuristic were seen in the 50 000 simulated profiles.

The mean difference between the heuristic WoE and the minimum WoE from all four alternative WoEs was

0.3 bans per locus (Table 4.4, column 1).
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Figure 4.1: The effect of database on Weight of Evidence (WoE) calculations for a one-contributor CSP. The
databases are described in Table 4.3. The x-axis shows the WoE computed using the database from which
the contributor Q was simulated (indicated in the subplot title) with FST = 0.03, minus the lowest WoE
computed using each of the four alternative databases and FST = 0. P(d>x) indicates the proportion of
differences that are > x.
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4.6.2 Imperfect database

CSPs were simulated with a varying value of FST (0.01, 0.02, or 0.03) from the IC1 database, mimicking

the situation where no available database matches the ancestry of Q exactly. 30 000 CSPs were simulated,

with 10 000 at each possible FST value. The hypotheses compared were identical to those in Section 4.6.1,

and the WoE was evaluated assuming IC1 as the database for X (the heuristic scenario), and assuming all

other databases in turn for the database of X (all incorrect assignments of the database). Once again the

minimum of the incorrect assignment WoEs was subtracted from the heuristic WoE.

The maximum number of non-conservative evaluations over the three FST values was 3 out of 10 000

evaluations, which is higher than that when the database of Q exactly matches that of X (FST=0, IC1,

Section 4.6.1, 0 out of 10 000 non-conservative) as expected, but the difference is both small and non-

significant (Fisher’s exact test, H0: odds ratio=1, HA: odds ratio 6= 1, p=0.25). This demonstrates that

the heuristic remains conservative compared to all tested alternative calculations even when the database

assumed for Q does not match the database of X exactly, which may occur if no database matches Q exactly

(which should be true for all databases) or if Q and X are in fact different individuals but share some

coancestry.

4.7 Two-contributor CSPs

Next 25 000 two-contributor profiles were simulated, with 1 000 simulations from each possible permutation

of database choices for the two contributors. The WoE was evaluated for these CSPs assuming the second

contributor as either known (Section 4.7.1) or unknown (Section 4.7.2).

4.7.1 Known second contributor

Initially, the second contributor was assumed to be a known contributor, rather than an unknown contributor.

This means that there is no database assigned to K when evaluating the WoE, so only the database choice

for X need be investigated. The WoE for the 25 000 profiles was evaluated assuming the correct database for

X (the heuristic calculation) and assuming each of the four incorrect database assignments, with hypotheses

of the form:

Hp: Q + K

Hd: X + K
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and once again the minimum of the four incorrect assignment WoEs was subtracted from the heuristic

WoE.

The WoE for all evaluations (both correct and incorrect) was reduced by approximately 3 bans

compared to the single-contributor CSPs when a known contributor was introduced into the CSP (Table 4.4,

column 2). There was little change in the difference between the heuristic evaluation and the minimum of

the incorrect assignment evaluations (Table 4.4, column 1). Across the five databases used to simulate Q,

the probability of a conservative heuristic evaluation ranged from 0.994 to 0.999, slightly wider than the

range for the single contributor tests.

4.7.2 Unknown second contributor

The WoE for the same 25 000 two-contributor CSPs was then evaluated assuming that second contributor

was unknown, giving hypotheses of the form:

Hp: Q + U

Hd: X + U

For these evaluations the heuristic WoE was evaluated (assuming the database of Q for both X and U), as

well as the WoE for three separate alternative calculations:

1. Correct database assignment for both X and U .

2. Correct database for U , minimum WoE over all possible assignments of the database for X.

3. Database ofX and U are assumed the same, minimum WoE over the four possible alternative databases.

Alternative 1 is only applicable in the 20 datasets where the true database of X does not match

that of U , while alternatives 2 and 3 are applicable in all 25 datasets.

Alternative 1 can be thought of as the most appropriate WoE, the heuristic should be conservative

because the probability that Q and U share alleles is increased through the action of the FST adjustment.

When the second contributor to the CSP is unknown, on average 0.997 of the simulations were conservative

using the heuristic compared to using alternative 1, with the minimum fraction of conservative simulations =

0.993 over the 20 database choices (Figure 4.2). The heuristic is conservative because the defence likelihood

is maximised when the probability of U and Q having matching alleles is maximised, which is achieved by

using the same database for U that Q was sampled from (as in the heuristic) together with a high value of

FST (0.03 here). The prosecution and defence likelihoods are similarly affected by the probabilities of alleles
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Figure 4.2: The effect of database on Weight of Evidence (WoE) for two-contributor CSPs with alternative
1. The databases are described in Table 4.3. The x-axis shows the WoE computed using the database of Q
for both contributors minus that obtained using the correct databases for X and U . The title of each subplot
indicates the databases from which each contributor was simulated, where Q is the queried contributor and
U is an unknown contributor. The x-axis labels indicate the databases used for each contributor in the
analysis. P(d>x) indicates the proportion of differences that are > x. Colour indicates the database of Q.
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Contributors under Hd X X+K X+U
True both True U Same dbase

Heuristic (bans) 20.3 17.8 10.7 10.7 10.7
Alternative (bans) 24.5 20.7 12.8 14.1 14.0
Difference (bans) 4.2 3.0 2.1 3.4 3.2
Difference (%) 18.8 15.6 17.9 27.4 25.9

Table 4.4: Mean Weight of evidence (WoE) for the heuristic rule and the alternatives discussed in the text.
The mean of the differences between the heuristic and alternative scenarios is also shown. The % Difference
row shows the mean difference as a percentage of the average of the heuristic and alternative means.

that U and Q do not share, so these are less important. The heuristic gives P(WoE>9) = 0.90295, so the

LR is in excess of one billion in the majority of cases, which is the maximum LR reported to court in the

UK.

Alternative 2 compares the heuristic WoE when the database of Q has been correctly ascertained to

the WoE in a situation where the database for U has been correctly ascertained, but the database of Q has

been incorrectly ascertained, so the database used for X is incorrect. This mimics a situation where there

may be information on the ancestry of U , who perhaps refused to be genotyped as he was not under suspicion,

but the ancestry of X is unknown. For alternative 2, the heuristic WoE is greater than the minimum of

alternative WoEs with probability >0.994 (Figure 4.3), with an average difference between the heuristic and

minimum alternative WoEs of 3.4 bans (Table 4.4). Note that the largest discrepancies are observed when

the heuristic incorrectly assigns the database of U (plots off the diagonal).

Alternative 3 compares the heuristic WoE when the database of Q has been assigned correctly to X

with the WoE when the heuristic has been used, but the database of Q has been misassigned so incorrectly

assigned to X, taking the minimum over all possible misassignments. This mimics a situation where the

heuristic is in use, but perhaps Q has lied about his ancestry, or the arresting officer has incorrectly assigned

his ancestry. For alternative 3, the heuristic WoE is greater than the minimum of alternative WoEs with

probability >0.996 (Figure 4.4), with an average difference between the heuristic and minimum alternative

WoEs of 3.2 bans (Table 4.4).

4.8 Heuristic vs. alternatives

Summary results for the simulation experiments presented in this Chapter are given in Table 4.4. In absolute

terms the mean difference between the heuristic WoE and alternative WoEs decreases as the problem difficulty

increases (with a corresponding decrease in WoE), but increases in relative terms compared to the alternative
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Figure 4.3: The effect of database on Weight of Evidence (WoE) for two-contributor CSPs with alternative 2.
The databases are described in Table 4.3. The x-axis shows the WoE computed using the database of Q for
both contributors minus the minimum WoE obtained over all other choices of databases for X, always using
the correct database for U. The title of each subplot indicates the databases from which each contributor was
simulated. The x-axis labels indicate the databases used for each contributor in the analysis (!IC1 indicates
all databases other than IC1). P(d>x) indicates the proportion of differences that are > x. Colour indicates
the database of Q.
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Figure 4.4: The effect of database on Weight of Evidence (WoE) for two-contributor CSPs with alternative
3. The databases are described in Table 4.3. The x-axis shows the WoE computed using the database of Q
for both contributors minus the minimum WoE obtained using each other database in turn for both X and
U. The title of each subplot indicates the databases from which each contributor was simulated. The x-axis
labels indicate the database used for both contributors in the analysis. P(d>x) indicates the proportion of
differences that are > x. Colour indicates the ancestry of Q.
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WoE. This suggests that if three or more contributors were to be considered the mean difference between the

heuristic WoE and alternative WoEs would be a larger percentage of the alternative WoEs. However, more

than two contributors were not considered here due to the computational demands of such a large simulation

study.

These results demonstrate that the heuristic WoE calculation proposed here is almost always con-

servative (at least 99.3% of simulations) compared to multiple alternatives for single contributor situations

(Figure 4.1), two-contributor situations where the second contributor is an uncontested known contributor,

and two-contributor situations where the second contributor is instead unknown when the alternative is

the ground truth (Figure 4.2), when the alternative is the correct database for U but the most favourable

database for X (Figure 4.3) and when the alternative is the most favourable database for X applied to both

X and U (Figure 4.4). When the heuristic WoE was not conservative, the difference between the heuristic

WoE and alternative WoE was always < 1.5 bans.

4.9 World populations

There are many ways to divide the world’s populations into different subpopulations. Chapter 3 along with

[Ramachandran et al., 2005] demonstrated that allele probabilities generally change smoothly with geographic

distance. As an example from Chapter 3, whether or not to define Afghanistanis as Middle Eastern or South

Asian becomes a somewhat subjective choice, depending on the criteria that are most important to the current

study; they will be genetically very similar to both Iranians and Pakistanis, their Middle Eastern and South

Asian neighbours respectively, but will be distinct from Moroccans and Bangladeshis, the Middle Eastern

and South Asian nations with the greatest geographical distance from Afghanistan. As a consequence,

in any particular case there is no “correct” choice of alternative subpopulations to evaluate the WoE for.

Instead, the desired statistic would be a WoE averaged over each possible database allocation for X, where

each database WoE is weighted by its plausibility given the specifics of the case in question; CCTV footage

showing some exposed Caucasian skin may weight the average WoE so that it is almost identical to the IC1

WoE, whereas the WoE in a case where each population is equally likely (e.g. a crime in a cosmopolitan city

for which there is no evidence indicating the ethnicity of the true culprit) would essentially be an unweighted

average WoE across the possible database choices.
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4.10 Casework recommendations

The heuristic presented here will return results that are almost certainly conservative, and therefore favours

defendants. Section 4.6.2 verified that this behaviour does not result from Q being sampled from the same

database that is subsequently used in the analysis phase, analogous to ensuring that a model is not being

tested on the same data that it was trained on.

Altering the value of FST alters the extent to which the heuristic WoE is conservative, so the choice

of an FST value can be used to tailor the WoE analysis to the case at hand. Chapter 3 demonstrated that

FST = 0.03 is greater than the majority of median FST estimates from global comparisons of subpopulations

with continental populations. This chapter has further demonstrated that FST = 0.03 is also sufficient for

the heuristic WoE to be conservative compared to various alternative calculations for the majority of cases.

Therefore, the recommendations of Chapter 3 to utilise an FST = 0.03 in routine casework is reiterated here.

While the results in Chapter 3 suggests that a lower value of FST may be used for e.g. Caucasians, the results

presented in this chapter demonstrate that utilising a sufficiently large value of FST ensures that the WoE

is conservative compared to a range of possible alternative calculations. As a result, the recommendation

stemming from this chapter is to utilise an identical sufficiently large value of FST regardless of the population

of Q (here FST = 0.03), despite the demonstration in Chapter 3 that within-population FST values differ

across populations. With such a recommendation, the WoE should remain conservative even if the population

of Q has been misassigned.

4.11 Misassigning the database of Q

Here, using the database most appropriate for Q for all unknowns has been demonstrated to be favourable

to defendants, given a sufficiently large value of FST . Misassignment of the ancestry of Q and subsequent use

an incorrect database, or if no database is appropriate to Q, will overstate the evidence against Q through

an inflated WoE. However, this is mainly accounted for here through the use of a large value for FST , which

decreases the WoE, ensuring that the WoE remains conservative even when the database of Q is misassigned,

and reducing the detrimental impact of the misassignment. A smaller value of FST may not be sufficient

to counteract the effect of database misassignment, while a larger value of FST may favour the defendant

unnecessarily.
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Chapter 5

Developing a peak height (PH) model
for the evaluation of forensic
likelihoods

Some of the work in this chapter has been published in Steele et al. [2016], see Appendix B for the accepted

manuscript. All work was performed by me.

5.1 Information available from PHs

All results presented in previous chapters use a discrete model to calculate the probability of a CSP given

some hypothesis, where the CSP peaks are classified as “certain”, “uncertain” or “non-allelic”. This clas-

sification of peaks uses the PH information, so the discrete model indirectly incorporates PHs. However,

much information available in the CSP is lost by not modelling epg PHs explicitly. In this chapter, an

implementation of a PH model is described that aims to fully utilise the PH information available in a CSP;

the results from validation tests of the implemented model will be presented in Chapter 6. This model has

been published as v6.0 of the CRAN package likeLTD.

As a motivating example for the utility of a model that incorporates PHs explicitly, suppose a single-

locus CSP as shown in Figure 5.1 has been observed. Assume that using the discrete model the peaks at

positions 4, 6, 8 and 10 would be called by the forensic practitioner as non-allelic, while peaks at positions 5, 7,

9 and 11 would be called as allelic. With these allele calls, a reasonable set of hypotheses would be Q/X+ U.

Ignoring the ordering of contributors and the effects of degradation, under Hd the discrete model described

in Chapter 1 would give equal weights to the genotypes {5,7}&{9,11}, {5,9}&{7,11}, and {5,11}&{7,9},

each with probability 4p5p7p9p11(1−D1,1)2(1−D1,2)2, where D1,1 is the heterozygote dropout probability
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for the first contributor, and D1,2 is the corresponding probability for the second contributor. However,

information from PHs, as seen in Figure 5.1, allows for an inference that the genotype pair {5,9}&{7,11}

is the most likely with average DNA contributions in RFU of 500 and 1000 RFU respectively, assuming a

low PH variability. Therefore, a suitable PH model should return this genotype pair as the most likely, and

should provide minimal weight to the genotype pairs {5,7}&{9,11} and {5,11}&{7,9}, as these would require

a high variability in PHs to explain the observed PHs; in each case of an incorrect genotype assignment the

best fit to the data would be two equal contribution contributors at 750 RFU, with a corresponding high

PH variance. A high PH variability may negate any inference of true genotypes, so that all three genotype

pairs are reasonable. The utilisation of PH information to enhance inference has previously been described

in Pascali and Merigioli [2012], Perlin and Sinelnikov [2009], Perlin and Szabady [2001].
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Figure 5.1: An example two-contributor single-locus CSP for which the incorporation of PH information will
give useful insight as to the true genotypes of the contributors. Using a PH model, peaks at alleles 4, 6, 8
and 10 will be determined to be non-allelic, peaks at alleles 5 and 9 will be determined to originate from a
minor contributor, while peaks at alleles 7 and 11 will be determined to originate from a major contributor.

A benefit of using a PH model, that is not highlighted by this example, is lack of having to classify

peaks as allelic/uncertain/non-allelic. For complex mixtures it can be difficult to decide if a peak in a

stutter position of a major peak has some allelic contribution, especially with high peak height variability.

Furthermore, because peaks do not have to be classified, the detection threshold employed to generate the

CSP can be lowered, giving extra information regarding peaks in stutter positions, and low-level peaks. A

high detection threshold has the potential to remove allelic peaks of a minor contributor of interest, in an
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effort to remove non-allelic peaks of a major contributor.

To allow for inter-Q comparisons, throughout this chapter results will be presented as WoE/log10(IMP),

which will be termed the Information Gain Ratio (IGR). The IGR has a maximum at 1.0, and an IGR<0

supports Hd.

5.2 The model

A CSP with replicates R and loci L, a hypothesis with contributors C and a database with alleles I are all

provided. Each element of G is one set of genotype allocations to the hypothesised contributors that can

explain the CSP. Q and K have known genotypes, so the elements of G vary according to the genotypes

allocated to any U. A single locus is considered here, l ∈ L, for which the database alleles at locus l are

available, Il, as well as joint genotype allocations that are being considered at locus l, Gl. From these the

effective dose, E, at replicate r ∈ R, joint genotype allocation g ∈ Gl and contributor c ∈ C for a specific

allele i ∈ Il is calculated as:

El,r,g,c,i = ng,c,iρrχc(1 + δc)
−fi , (5.1)

where ρ is a multiplicative adjustment to the expected dose across replicates, χ is the expected DNA

contribution of an individual in the first replicate in RFU, δ is the degradation parameter that adjusts

the expected dose based on the mean adjusted length of an allele in base pairs, f is the mean adjusted

fragment length and ng,c,i ∈ {0, 1, 2} indicating how many copies of allele i contributor c possesses in joint

genotype allocation g. n can be thought of as a three-dimensional array with rows Gl, columns Il and layers

C, with each cell taking values 0, 1 or 2, and the rows sum to 2. Equation (5.1) gives the replicate and

degradation-adjusted dose for a single individual at allele i.

The expected dose that remains at position i (A), stutters to position i− 1 (S), double-stutters to

position i− 2 (D) or over-stutters to position i+ 1 (O) for each El,r,g,c,i is calculated as:

Sl,r,g,c,i = βαluiEl,r,g,c,i,

Dl,r,g,c,i = ηEl,r,g,c,i,

Ol,r,g,c,i = θEl,r,g,c,i,

Al,r,g,c,i = El,r,g,c,i − (Sl,r,g,c,i +Dl,r,g,c,i +Ol,r,g,c,i)

where β is the mean gradient for the linear relationship between longest uninterrupted sequence (LUS, u)

and stutter fraction [Brookes et al., 2012, Bright et al., 2013c, Kelly et al., 2014] across loci, αl is a locus
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adjustment parameter for the stutter gradient for l ∈ L, η is the mean double-stutter fraction across loci and

θ is the mean over-stutter fraction across loci. In reality the over- and double-stutter rates (η and θ) also

have a linear relationship with LUS, however, the expected number of observed over- and double-stutters in

a single CSP is too low to estimate the gradient.

The A values for each i are then summed with all of the S values from position i + 1, D values

from position i+ 2 and O values from position i− 1 across all individuals c to give the expected PH at each

position i:

Pl,r,g,i = piλ(1 + ε)−fi +
∑
c∈C

Al,r,g,c,i + Sl,r,g,c,i+1 +Dl,r,g,c,i+2 +Ol,r,g,c,i−1. (5.2)

where piλ is the unadjusted dropin dose for allele i, with λ being the dropin parameter, which gives a dropin

dose in RFU, which is then adjusted for degradation, where ε is the degradation rate for dropin peaks.

Dropin of a given allele can reasonably be expected to occur in proportion to the frequency of that allele

in the population, so if there is a given environmental DNA load in RFU, λ, then for each allele, i, in the

population database we expect piλ dose of that allele as a dropin dose in RFU in a given replicate of a CSP.

Note that this dropin dose is subject to degradation at a separate rate to that of non-dropin doses.

The PHs at positions i, hl,r,i, are then assumed to be gamma distributed:

hl,r,i ∼ Γ(Pl,r,g,i, σPl,r,g,i), (5.3)

where σ is the scale parameter for the gamma distribution which is constant across joint genotype allocations

and loci. Here the parameterisation of the gamma distribution is using the mean (Pl,r,g,i) and variance

(σPl,r,g,i). For observed peaks, a discrete approximation to the probability mass function is computed as:

F (hl,r,i + 0.5|Pl,r,g,i, σPl,r,g,i)− F (hl,r,i − 0.5|Pl,r,g,i, σPl,r,g,i), (5.4)

where F is the cumulative distribution function for the gamma distribution. This approximation parti-

tions the continuous probability for PHs into discrete bins, where each RFU value of PH incorporates the

probability of all PHs that would be rounded to that RFU value.

Any expected peak from the model for the current joint genotype allocation, g, that was unobserved

in the CSP (dropout) is given a probability mass of:

F (tl − 0.5|Pl,r,g,i, σPl,r,g,i), (5.5)
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where tl is the detection threshold used when analysing the epg at locus l. This is the probability of a PH

having been sub-threshold, given the mean and variance of the expected peak.

Unobserved alleles with a low probability in the population are classified as “rare”, and combined

into a single allele. When the genotypes of the unprofiled contributors (X and U) include > 1 alleles classified

as rare, these are assumed to be distinct i.e. no shared alleles among them. Note that rare combined alleles

are necessarily unobserved, therefore non-dropout probabilities do not need to be adjusted.

5.2.1 Penalties and constraints

Parameters are penalised as shown in Table 5.1. The δ, ε and σ penalties are designed to constrain the

parameters so that overly large values are penalised. The α penalty constrains each locus to have a gradient

close to the mean gradient. The β, η and θ penalties are intended to support a wide range of plausible

values. The incorporation of a penalty to the likelihood function is the maximisation equivalent to defining

a prior distribution on parameters in an integration scenario such as that used in Markov chain Monte Carlo

(MCMC) methods.

Parameter Distribution Mean SD
β N 0.013 0.010
η Γ 0.02 0.019
θ Γ 0.02 0.019

log10 αl N 0 0.300
δc e 0.02 0.020
ε e 0.02 0.020
σ e 100 0.010

Table 5.1: Penalties applied to the parameters of the PH model. Distribution gives the penalty distribution;
N=normal, Γ=gamma, e=exponential.

5.2.2 Combining probabilities and maximisation

At allele i the probability of an observed peak with height hl,r,i is given in (5.4), while the probability of

no peak observation (hl,r,i < tl) is given in (5.5). If this conditional probability is represented as a function

a(hl,r,i, Pl,r,g,i, σ, tl), then individual peak probabilities are combined to form a likelihood as:

∏
l∈L

[ ∑
g∈Gl

[ ∏
r∈R

[∏
i∈Il

a(hl,r,i, Pl,r,g,i, σ, tl)
] ∏
c∈C

Pr(Gg,c)
]
πl

]
(5.6)

where πl is the combined penalty on the likelihood at locus l given the parameter values for β, η, θ, αl, δ, ε
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and σ. Note that (5.6) is essentially a restating of (1.2), but with a focus on PHs and an incorporation of a

penalty.

The likelihood is then maximised using a genetic algorithm that simulates “mutation”, “recombina-

tion” and “selection” on sets of randomly generated parameter values to obtain the set of parameters that

gives the highest penalised likelihood [Mullen et al., 2011]. Note that the prosecution and defence likelihoods

are maximised separately.

5.3 Theoretical predictions

The genotype probabilities for a number of artificial single-locus CSPs were evaluated using both a simpli-

fied version of the PH model, and the dropout model. CSPs were generated from the genotypes of each

contributor, and a heterozygote dose for each contributor, from which PHs of the CSP can be calculated.

The stutter fraction used to generate the CSPs was constant across alleles i.e. does not vary with LUS, and

was set at 0.1. CSPs were not subject to degradation. All peaks above tl were included in the CSP, where

tl = 50 RFU.

For the PH model, Pl,r,g,i were calculated assuming no double-stutter or over-stutter, a constant

stutter rate across alleles, no degradation and no dropin. Contributor doses, χc, were assumed equal to the

heterozygote dose used to generate the CSP. To calculate the genotype probabilities a number of parameters

were fixed; σ = 10, tl = 50. Probabilities of hypothesised dropouts were calculated using (5.5), while

probabilities of observed peaks were calculated using (5.4).

For the discrete model, all allelic peaks were correctly labelled as allelic, while all stutter peaks were

labelled as non-allelic. Dropout probabilities were calculated using the scheme of Tvedebrink et al. [2009]

with β1 = −4.35, as estimated by Tvedebrink et al. [2009], and β0 = 18.556 which is an average over locus

estimates in Tvedebrink et al. [2009].

5.3.1 Single contributor

Using both the discrete model and PH model, a breakdown of the likelihood ratios for a number of single-

contributor CSPs is given in Table 5.2. Under C bold alleles indicate allelic peaks, while non-bold alleles indi-

cate stutter peaks, so the first four CSPs are low-template, and the last three are good-template. Focussing

on Pr(R|G), any mismatch between a hypothesised peak and its observation will have a low probability,

leading to a low Pr(GX) e.g. under C=5,8, GX=6,8 the D(A6) indicates that a hypothesised allelic dose
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Label C GX/ Pr(R|G) P(G)
GQ Discrete PH Hp Hd

(a) 5,8

5,8 (1−D)2 O(h5, A5)O(h8, A8)D(S5)D(S8) 1 2p5p8
6,8 - D(A6)O(h8, A8)O(h5, S6)D(S8) - 2p6p8
5,9 - O(h5, A5)D(A9)D(S5)O(h8, S9) - 2p5p9
6,9 - D(A6)D(A9)O(h5, S6)O(h8, S9) - 2p6p9

(b) 5,6

5,6 (1−D)2 O(h5, A5 + S6)O(h6, A6)D(S5) 1 2p5p6
6,6 - O(h5, 2S6)O(h6, 2A6) - p26
5,7 - O(h5, A5)O(h6, S7)D(A7) - 2p5p7
6,7 - O(h6, A6 + S7)D(A7)O(h5, S6) - 2p6p7

(c) 5

5,5 1−D2 O(h5, 2A5)D(2S5) 1 p25
5,6 - O(h5, A5 + S6)D(A6)D(S5) - 2p5p6
6,6 - D(2A6)O(h5, 2S6) - p26
4,5 - D(A4 + S5)O(h5, A5)D(S4) - 2p4p5
5,Z D(1−D) O(h5, A5)D(AZ)D(S5)D(SZ) - 2p5pZ
6,Z - D(A6)D(AZ)O(h5, S6)D(SZ) - 2p6pZ

(d) 5

5,5 (1−D2) O(h5, 2A5)D(2S5) - p25
5,6 - O(h5, A5 + S6)D(A6)D(S5) - 2p5p6
6,6 - D(2A6)O(h5, 2S6) - p26
4,5 - D(A4 + S5)O(h5, A5)D(S4) - 2p4p5
5,Z D(1−D) O(h5, A5)D(AZ)D(µS , 5)D(SZ) - 2p5pZ
6,Z - D(A6)D(AZ)O(h5, S6)D(SZ) - 2p6pZ
5,8 D(1−D) O(h5, A5)D(A8)D(S5)D(S8) 1 2p5p8
5,9 - O(h5, A5)D(A9)D(S5)D(S9) - 2p5p9
6,8 - D(A6)D(A8)O(h5, S6)D(S8) - 2p6p8
6,9 - D(A6)D(A9)O(h5, S6)D(S9) - 2p6p9

(e) 4,5,7,8 5,8 (1−D)2 O(h5, A5)O(h8, A8)O(h4, S5)O(h7, S8) 1 2p5p8

(f) 4,5,6
5,6 (1−D)2 O(h5, A5 + S6)O(h6, A6)O(h4, S5) 1 2p5p8
4,6 - O(h4, A4)O(h6, A6)D(S4)O(h5, S6) - 2p4p6
5,7 - O(h5, A5)D(A7)O(h4, S5)O(h6, S7) - 2p5p7

(g) 4,5

5,5 1−D2 O(h5, 2A5)O(h4, 2S5) 1 p25
5,6 - O(h5, A5 + S6)D(A6)O(h4, S5) - 2p5p6
4,5 - O(h4, A4 + S5)O(h5, A5)D(S4) - 2p4p5
4,6 - O(h4, A4)D(A6)D(S4)O(h5, S6) - 2p4p6
5,Z D(1−D) O(h5, A5)D(AZ)O(h4, S5)D(SZ) - 2p5pZ

Table 5.2: Likelihoods for a number of single contributor CSPs (C) split into Pr(R|G) and P (G) using both
the discrete model and the PH model. The genotype of Q or X for each term of the likelihood is given in
GX/GQ. CSP alleles in bold are allelic peaks, non-bold are non-allelic. Only single-stutter is considered here.
CSPs (a-d) simulate low-template profiles while CSPs (e-g) simulate good-template profiles. D is the dropout
probability, which under the PH model is a function of expected PH, D2 gives the dropout probability for a
homozygous allele. O is the probability of an observed peak as a function of both the observed PH, h, and
the expected PH. Ax indicates the allelic contribution to expected PH at allele x, Sx indicates the stutter
contribution to expected PH at allele x−n that stuttered from allele x.
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allele has dropped out, which has low probability if the allelic dose is sufficiently large, just as O(h5, S6)

indicates that an observed truly allelic peak is hypothesised as having only stutter dose which is likewise

improbable if the allelic dose is sufficiently large. Taking into account these mismatches, most CSPs are left

with a single GX having a high Pr(R|G). To verify this, the Pr(R|G)s were calculated for a range of expected

heterozygous peak doses (51-151 RFU for low-template CSPs, 300-1500 for good-template CSPs).

Calculating Pr(R|G) for all X in Table 5.2 gives support for a single genotype under Hd for most

CSPs under both models over the range of heterozygote doses tested (see Figure 5.2), so discrete and PH

models are broadly analogous for single-contributor CSPs, regardless of DNA template, and should give

similar LRs. CSPs (c) and (d) depart from this behaviour, as in both cases each model starts to support

a GX that includes dropout at low RFU. In CSP (c) the true contributor is homozygous and the support

for dropout genotypes is ≈ 20% at 51 RFU, whereas in CSP (d) Q is heterozygous and the support for

dropout genotypes is ≈ 90% using the PH model at 51 RFU. Similarly, the discrete model has 20% support

for dropout genotypes at low RFU when the true contributor is homozygous and 40% support for dropout

genotypes when the true contributor is heterozygous. What appears to be a significant difference between

the two models is in fact a difference of degree rather than a difference of kind; both models have increasing

support for a dropout genotype at low RFU, and both models support a dropout genotype more when the

true contributor is heterozygous than when he is homozygous. Note that the discrete model has greatest

support for dropout genotypes when D=0.5, as this is the value of D that maximises D(1−D), which occurs

at 71 RFU, which corresponds to a heterozygote dose of 79 RFU taking into account that H1 is estimated

after stutter; this matches the highest probability of dropout genotypes seen at ≈80 RFU in Figure 5.2.

5.3.2 Two contributors

No shared alleles

For a mixed CSP the PH model is expected to utilise the extra information in the PH data to return a

more extreme WoE in favour of the true hypothesis compared to the discrete model when the contributors

have unequal contributions and do not share any alleles. When the contributors have approximately equal

contributions the two models should perform similarly, as genotype deconvolution is difficult at equal con-

tributions and there are no shared alleles in this CSP. Once again this can be demonstrated by breaking

down the likelihood ratios (Table 5.3) for various CSPs. The same improbable observed/expected PH pair-

ings that are encountered in single contributor profiles apply; hypothesised non-allelic positions paired with

observed truly allelic peaks and vice versa will have a low probability e.g D(A8,X) in the second CSP. In
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Figure 5.2: Pr(R|GX) under Hd for CSPs in Table 5.2. CSP (e) is omitted as there is only a single genotype
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Figure 5.3: Pr(R|GX ,GU ) under Hd for the first two-contributor CSP in Table 5.3 with varying heterozygote
dose (top, scale fixed at 10) or scale (bottom, heterozygote dose fixed at 1000), and either a major/minor
(left, 1:10 ratio) or equal contributions (right, 1:1 ratio) design. Y-axis shows the normalised Pr(R|GX ,GU ),
x-axis shows the heterozygous dose used to generate the CSP and calculate Pr(R|GX ,GU ) or the scale used
to generate the CSP and calculate Pr(R|GX ,GU ). Legend displays GX and GU .
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addition to those improbable pairings, if the two contributors have dissimilar DNA contributions a mismatch

of contributor dose and observed peak will be improbable e.g. O(h5, A5,X) in the first CSP will have a low

probability if the peak at position 5 is large but X is hypothesised to be the minor contributor or vice versa.

In contrast, if the contributors have approximately equal contributions no such combination is possible, so

there will be no improbable allelic peak/hypothesised contributor pairings: O(h5, A5,X) ≈ O(h5, A5,U ) in

the first CSP of Table 5.3. So for CSPs with equal contributions, multiple genotype combinations will be

supported under Hd, which is similar to the discrete model, whereas with unequal contributions the PH

model will only support a single, or a few, genotype combinations, and the discrete model will again support

many genotypes equally. This is seen in Figure 5.3 (top row), where the Pr(R|G) have been evaluated for

the first CSP of Table 5.3 with varying heterozygote doses, and with either the first and second contributor

having equal contributions (Equal), or the second contributor having 10× the dose of the first contributor

(Maj/min).

The theoretical predictions so far have assumed a small value for the gamma distribution scale, σ =

10, however, it is expected that the utility of the PH model breaks down with a very large PH variability. To

demonstrate this behaviour, the first CSP from Table 5.3 was simulated again, but with a fixed heterozygote

dose for X of 1000 RFU, a varying value of σ, where now the observed PHs were drawn from a gamma

distribution with mean equal to the expected PH and scale=σ. The probability of peaks under Pr(R|G)

were dynamically calculated, so that an “observed” peak < t was given the dropout probability rather

than the observed peak probability. No allelic peaks dropped out during the simulation, but dropouts of

stutter peaks were observed. As σ becomes very large the PH model starts to support some incorrect GX
for major/minor mixtures, while the discrete model continues to support all genotypes equally (Figure 5.3,

bottom row, Maj/min). Because an incorrect genotype fits the data best for some CSPs, a greater σ will

be required to explain the CSP under Hp, which will be penalised by the PH model, so for some CSPs with

high PH variability the discrete model will perform better than the PH model. When the contributors have

equal contributions, the PH model continues to support all genotypes equally under Hd despite a high σ

(Figure 5.3, bottom row, Equal); the Hp explanation may still require a greater σ than the average over all

possible genotypes under Hd, so may similarly be penalised in some high variability CSPs.

Shared alleles

Now consider a CSP with a shared allele, where the true genotypes of the contributors are G1=5,7 and

G2=5,6, and an additional stutter peak was observed at allele 4 (see the second CSP in Table 5.3).
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Figure 5.4: Pr(R|GX ,GK) under Hd for the second CSP in Table 5.3, which is a two-contributor CSP with one
known contributor (K), with varying heterozygote dose. The unprofiled contributor (Q/X) has the same as
(left), 0.1× (middle) or 10× (right) the heterozygote dose of K. Y-axis shows the normalised Pr(R|GX ,GK),
x-axis shows the heterozygous dose for X used to generate the CSP and calculate Pr(R|GX ,GK). Legend
displays GX .

When one of the contributors to the two person mixture is assumed known, the PH model is expected

to be able to utilise the extra PH information in the CSP to return a more extreme WoE in favour of the true

hypothesis compared to the discrete model. Regardless of the relative DNA contributions, the discrete model

is unable to distinguish between the three possible non-dropout genotypes for X (Figure 5.4), as they all have

a simplified probability of (1−D)4 (Table 5.3). In contrast, the PH model supports the true genotype of X

over all other possibilities in each scenario, as once again mismatches between a hypothesised contribution

and observed PH are improbable. For example, under equal contributions at 500 RFU heterozygote dose the

CSP heights are 100, 950, 500 and 450 RFU for alleles 4, 5, 6 and 7 respectively, and a hypothesised GX=7,7

will have expected PHs 50, 500, 550 and 900 RFU; alleles 5 and 6 will have a low probability, so GX=7,7 will

have a low probability. Note that this is different to a Q/X+U scenario, where the PH model would support

genotypes GX={5, 6},GU={5, 7}, GX={5, 7},GU={5, 6}, GX={5, 5},GU={6, 7} and GX={6, 7},GU={5, 5}

equally. In this way, including a known contributor can enable the PH model to utilise extra information

over the discrete model, even when the two contributors have equal contributions.

If instead the second contributor is assumed unknown, the PH model is expected to gain information

over the discrete model for both unequal and equal contribution mixtures. Probabilities of genotypes are

not shown here, as there are 157 and 18 possible genotype combinations for the PH and discrete models

respectively. When the two contributors have equal contributions, the PH model supports four genotype

allocations, those where two 5 alleles are allocated across the two genotypes, whereas the discrete model

supports 12 separate genotype allocations, those where no dropout is hypothesised in either contributor
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(Figure 5.5, top left). When the mixture is instead a major/minor mixture, where the first contributor is

present at the heterozygote dose, and the second contributor is present at a tenth of the heterozygote dose,

the PH model gives most support to the true genotype allocation, G1=5,7 and G2=5,6, but supports multiple

genotypes for the minor contributor, G2, as their genotype cannot be entirely deconvoluted at their low

dose of between 60 and 100 RFU (Figure 5.5, top right). Conversely the discrete model largely continues

to support the same 12 genotypes as the equal contributions condition. If instead the second contributor

contributes 10× the heterozygote dose, the PH model supports a single genotype combination, which is the

ground truth, while the discrete model continues to support the same 12 genotype combinations (Figure 5.5,

bottom left). If now the heterozygote dose is fixed at 600 RFU, but the mixture ratio is varied from 0.1 to 10,

a similar pattern is seen, where multiple genotypes are supported at a low mixture ratio, because the minor

contributes a small amount so is difficult to deconvolute, before supporting only the ground truth genotypes

between approximately mixture ratios 0.3 and 0.6 (Figure 5.5, bottom right). Around mixture ratio 1, four

genotype combinations that include a double dose of allele 5 are supported, while above approximate mixture

ratio 2.5 the ground truth genotype allocation is supported again.

5.4 Other continuous models

There are currently six continuous models, including likeLTD, that have been developed (summarised in

Table 5.4), each with differing modelling choices and assumptions.

5.4.1 DNAmixtures

DNAmixtures is based on a Bayesian network implementation of a PH model published by Cowell et al.

[2015]. Similar to likeLTD, DNAmixtures assumes that PHs are gamma distributed. The stutter model of

DNAmixtures is simpler than that of likeLTD, with a single parameter for the mean stutter proportion, β,

so that for every allelic peak, (1 − β) of the dose remains at the parent peak position, while β of the dose

stutters to a position one repeat unit shorter. Note that the stutter proportion does not vary by locus, and

is not affected by the LUS or any other characteristic of an allele. DNAmixtures does not model OS or DS.

Neither does DNAmixtures model degradation, although the authors note that implementation of a non-

contributor-specific degradation model would be simple. DNAmixtures explicitly models silent alleles, rather

than treating them as dropout alleles. DNAmixtures implements a Bayesian network incorporating known

and unknown genotypes, observed PHs, and model parameters [Graversen and Lauritzen, 2014], which can
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Figure 5.5: Pr(R|GX ,GU ) under Hd for the second two-contributor CSP in Table 5.3 with varying heterozy-
gote dose (top and bottom left, scale fixed at 10) or mixture ratio (bottom right, heterozygote dose fixed at
600). Y-axis shows the normalised Pr(R|GX ,GU ), x-axis shows the heterozygous dose used to generate the
CSP and calculate Pr(R|GX ,GU ) or the mixture ratio used to generate the CSP and calculate Pr(R|GX ,GU ).
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be used to compute the likelihood efficiently using the HUGIN software. This allows DNAmixtures to model

dropin as originating from an extra unknown contributor of low-level. Each locus is treated as independent,

and so is assigned a separate Bayesian network, which may cause problems modelling locus dependency such

as linkage for closely related individuals, or distant relatedness as accounted for using FST . However, this

problem was solved for distant relatedness by Tvedebrink et al. [2015] who incorporated an FST correction

into the Bayesian network using a multivariate Dirichlet-multinomial distribution implementation. The use

of the proprietary HUGIN software means that DNAmixtures is not fully open source.

5.4.2 EuroForMix

Similar to DNAmixtures, EuroForMix is built on the model of Cowell et al. [2015], but has been extended

to incorporate degradation, dropin and distant relatedness through an FST adjustment [Bleka et al., 2016],

which are all missing in DNAmixtures, and are important phenomena to model (see Chapter 1). However,

the implementation of EuroForMix does not depend on HUGIN. It is the only fully open-source software

for computation of forensic WoE using PH information, other than likeLTD. Both Bayesian (non-MCMC

integration) and Frequentist (maximisation) methods of inference are available in the package. EuroForMix

requires a laboratory specific parameter when modelling dropin that may make portability across laborato-

ries more difficult than likeLTD; the probability of a dropin allele is dependent on the rate parameter for

the exponential distribution, which is fixed by the user and is likely to vary across genotyping machines

(the authors use the Applied Biosystems 3500xl Genetic Analyzer), kits and laboratories. Dropin is handled

differently from likeLTD, which includes dropin dose at each peak position and calculates the probability of

all peaks as gamma distributed. EuroForMix instead treats unexplained peaks in a hypothesis differently,

classifying them as dropins that are exponentially distributed above the detection threshold, which is mod-

ulated by a probability of dropin, C, while the probability of all non-dropin peaks are then modulated by

1 − C. This appears to be a hybrid between the discrete dropin model, C and 1 − C, and the continuous

model, k(hi − t|ζ).

5.4.3 LiRa

LiRa models the proportion of PH over sum PHs for a locus as Dirichlet distributed [Puch-Solis et al., 2013],

which is equivalent to modelling the individual PHs as gamma distributed with a common scale parameter,

similar to DNAmixtures, EuroForMix and likeLTD. The inclusion of dropout alleles alters the computation,

as the DNA quantity proxy used by Puch-Solis et al. [2013],
∑

(O), needs to be upweighted to account for
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lost quantity due to PHs that are lower than the detection threshold. This is done by sequentially estimating

the expected PH at each unobserved position, and adding that expected PH to the total PH at the locus,

before estimating the next unobserved expected PH. The stutter model of LiRa is more complicated than

that of the two Cowell et al. based models [Cowell et al., 2015, Bleka et al., 2016], as the stutter proportion

has a linear relationship with the length of allele in base pairs, F , so is dependent on both the marker, l, and

specific allele, i. Similar to likeLTD, LiRa assumes that the linear relationship of the stutter proportion goes

through the origin, as there is no intercept in the model. The model also differs between CSPs, as the stutter

ratio is actually linear in relation to
∑

(O/Fi,l), so the relationship will vary if the CSP is good-template

or low-template. The LiRa dropin model multiplies the Poisson-distributed probability of observing the

n hypothesised dropin peaks by the product of the population allele probability and the gamma pdfs for

the dropin peak for each of the n hypothesised dropin alleles [Puch-Solis, 2014], as shown in Table 5.4.

If no dropin alleles are hypothesised this simplifies to the Poisson probability of observing zero dropins,

given some mean dropin rate, which was experimentally determined by Puch-Solis [2014]. Note that this

means that dropin cannot have occurred at any position where an explained peak has been observed, similar

to EuroForMix and in contrast to likeLTD. Treating both dropin peaks and non-dropin peaks as gamma

distributed seems preferable to the EuroForMix implementation of gamma-distributed non-dropin peaks and

exponentially-distributed dropin peaks. Note that LiRa was developed in house by LGC Forensics, and is

not available for use externally.

5.4.4 STRmix

STRmix has the most sophisticated stutter model, with stutter ratio being proportional to the size of all

uninterrupted repeat sections in a given allele, which was specifically designed to deal with SE33 which has

two long repeat sections, so has a stutter behaviour that cannot be correctly modelled in terms of LUS

[Taylor et al., 2016]. The STRmix degradation model is based on the work of Tvedebrink et al. [2009, 2012],

which found that the effect of degradation on the dropout probability is exponentially distributed with the

molecular weight of an allele. The authors of STRmix subsequently confirmed that the effect of degradation

on PHs was best modelled with such an exponential relationship, rather than with a linear relationship

[Bright et al., 2013b]. STRmix also models the PH of dropin events as exponentially distributed [Taylor

et al., 2013], similar to EuroForMix. Once again this means that dropin cannot be modelled as having

occurred at a position where a non-dropin peak has been observed. The probability of an allele dropping

out is modelled as the CDF of the gamma distribution, using the same parameters as those for non-dropout
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alleles. Mixture deconvolution is performed by applying these degradation and stutter models to a CSP,

with parameter elimination being through the use of Markov chain Monte Carlo (MCMC) [Taylor et al.,

2013]. Perhaps the most important difference between all of the models previously described and STRmix

is that STRmix models the ratio of observed PHs to expected PHs obtained from their model as lognormal

distributed, whereas the previous models all assume that PHs are gamma distributed. STRmix includes

locus-specific parameters that allow the amplification efficiency to differ between loci, meaning different loci

can have different mean PHs, whereas likeLTD incorporates this information into an increased variability

over the whole profile, rather than adding extra parameters.

5.4.5 TrueAllele

TrueAllele differs from the other PH models, as it fully models the EPG trace, rather than modelling PHs

above the detection threshold and dropouts below [Perlin et al., 2011]. Each time point of the epg will have

a trace height, which will be referred to here as PH for simplicity. TrueAllele models PHs with a truncated

(>0) multivariate normal distribution, where the distribution parameters are a vector of expected PHs for

each position, and a covariance matrix between amplification variation and a diagonal matrix of PHs at each

position, with baseline variance incorporated. The expected PH at each position is the sum of genotypic

contributions over all individuals. The mixture weights used to determine genotypic contribution are locus

specific, drawn from a multivariate normal distribution with mean equal to the mean mixture weights, and

covariance matrix being a mixture weight variance parameter multiplied by an identity matrix. All non-

allelic positions of the epg will have expected PH 0, as there is no contribution from baseline to the expected

PH, so all baseline positions are explained through variance away from 0. Both the model variables, and

the genotypes of contributors, are integrated over using MCMC, giving the posterior probabilities for the

genotypes of hypothesised contributors. Perlin et al. [2011] do not state whether, or how, they model stutter,

dropin or degradation, but note that it is possible to do so.

5.4.6 Comparison of models

Distribution

In Kelly et al. [2012] the authors state that modelling peak heights as gamma distributed captures a skewness

in heterozygote balance that the lognormal distribution is unable to capture. However, Kelly et al. [2012]

chose to implement the lognormal distribution in STRmix due to the relative simplicity of the lognormal

distribution and because the normal distribution is more familiar to biologists and forensic practitioners.
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Therefore, modelling peak heights as gamma distributed gives a better fit to peak height data than the

lognormal, and is desirable without taking into account issues of complexity and familiarity.

While many papers have been published validating TrueAllele [Perlin et al., 2011, Kadash et al.,

2004, Perlin et al., 2013, 2014], there has been no consideration of the suitability of the truncated nor-

mal distribution to PH data compared to other choices, such as the gamma or lognormal. Without such

comparisons, it is difficult to comment on the suitability of the truncated normal.

Stutter models

The stutter models employed range from a simple constant stutter rate across the profile (DNAmixtures,

EuroForMix) to a full linear relationship between LUS and stutter ratio (STRmix). During development,

likeLTD had a full linear stutter model, however, the intercept was estimated at 0 for all CSPs tested,

so the intercept was subsequently removed from the model. Additionally, likeLTD is the only model that

incorporates double-stutter and over-stutter, which were both observed many times during validation of the

likeLTD model. Specifically, over-stutter is relatively common at the trinucleotide repeat locus D22. Other

models may choose to reduce the incidence of double- and over-stutter peaks by increasing the detection

threshold, however, this risks losing minor allelic peaks of interest.

Dropin models

Dropin models employed can be split into those that model dropin as exponential (EuroForMix, STRmix),

and those that model it as gamma (LiRa, likeLTD). Because dropin peaks are generated through the same

processes as non-dropin peaks it seems consistent to model both types of peak as originating from the

same distribution, which only LiRa and likeLTD do. Additionally, both the EuroForMix and STRmix

dropin models depend on laboratory-specific parameters, reducing the applicability of their dropin models in

different laboratories. This may be seen as a positive, by ensuring that a model is tailored to the laboratory

it is being used in, or a negative, in requiring extra validation before a model can be employed in a new

laboratory. likeLTD employs the only dropin model that allows peaks to share dropin and non-dropin doses;

if dropin is thought of as sporadic observations of DNA peaks, rather than as unexplained alleles given a

hypothesis, then there is no reason why a dropin event could not occur at an allelic position, which becomes

increasingly likely if the allele is common in the population. A dropin event that overlaps an allelic peak will

alter the peak height at that position, which is unable to be accounted for by any other model. Additionally,

the likeLTD dropin model is subject to degradation, which no other model accounts for. Dropin peaks
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may be expected to experience more degradation than non-dropin peaks, so this is a realistic modelling

assumption. It also allows for minor contributors to be explained as dropin with degradation, which other

models are unable to do.

Availability

EuroForMix and likeLTD are open-source, DNAmixtures requires proprietary back-end software, but is itself

freely available, STRmix is proprietary but is available for use, while LiRa is proprietary and unavailable

for free use, as it is in-house software. Open source software is important for easy testing and altering of

modelling assumptions.

Runtime

For the Meredith Kercher bra clasp (see Section 6.6), likeLTD took between 16 and 17 minutes to query

Raffaele Sollecito, and between 25 and 30 minutes to query Amanda Knox. In contrast, both EuroForMix

and STRmix took less than a minute to run for each Q. This is a slight deficiency of likeLTD, but the

runtimes are not prohibitive.

Uptake

EuroForMix was developed, and is used extensively, in Europe as part of EuroForGen. STRmix was devel-

oped as a joint venture between the New Zealand and Australian forensic services, and is used extensively

throughout Australia and New Zealand. STRmix is additionally gaining some traction within UK foren-

sic providers. LiRa is used in-house at LGC-forensics in the UK, but is not available for use externally.

TrueAllele has been used mainly in the US, but has seen use elsewhere.

Conclusions

Based on the available information, EuroForMix and STRmix seem to be the strongest models based on

availability, model complexity, runtime and uptake. While likeLTD is slightly slower than EuroForMix and

STRmix, it models phenomena that no other model has incorporated that are important for some CSPs, so

may be preferable in some situations. It is difficult to comment on the suitability of TrueAllele due to a lack

of information regarding its stutter, dropin and degradation models. DNAmixtures does not seem sufficiently

developed to be of use in casework due to a lack of a degradation model, dropin model and adjustment for
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distant relatedness; as discussed in Chapter 3, failing to account for distant shared ancestry between Q and

X can be unfairly biased against the suspect.

5.5 Further considerations and modelling choices

Now we return to considering the modelling choices that were made while developing the likeLTD PH model.

5.5.1 Stutter model

There have been some suggestions that the stutter ratio of a given allele depends on the AT content of the

amplified fragment [Brookes et al., 2012], which could have been modelled with a parameter similar to LUS,

u, but for the average AT content of a specified allele in the population. However, since there is contradictory

evidence on this supposed relationship [Gill et al., 2015], no such effect has been modelled here.

Stutters are possible in whole repeat positions other than x-n, x-2n and x+n. Furthermore, stutters

are possible in partial repeat positions away from the parent peak e.g. Gill et al. [2015] give examples of

stutters observed in positions two basepairs shorter than the parent peak at the tetranucleotide loci D1S1656

and SE33. However, these classes of stutters are expected to be both rare and have a small stutter ratio (and

hence small PH), and so are expected to be relatively unimportant to the modelling of PHs. The explanatory

power that modelling these rare stutter classes would provide to the model does not warrant the increased

computational complexity that would be introduced. Any observations of these classes of stutters can be

explained as dropins by the existing model.

5.5.2 Heterozygote balance

Heterozygote imbalance is believed to predominantly originate from pipetting variability rather than PCR

variability [Gill et al., 2005]. As a result, no relationship between locus and heterozygote balance has been

observed [Kelly et al., 2012], as pipetting has no locus-specific effects. Therefore, there is no need for the

variance of PHs to behave differently at different loci, so the model contains only a single σ parameter for

the whole profile.

5.5.3 Relative DNA contribution

The model specified here does not allow the relative contributions from individuals to vary across replicates.

Some authors instead choose to allow the relative contributions of DNA to vary [Perlin et al., 2011], as it is
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expected that through pipetting variability there will be some noise in the amount DNA from contributors

taken forward for PCR and subsequent analysis across replicates. However, this effect is not expected

to be systematic, so should be accounted for by a relatively high value of σ for CSPs where the relative

contributions vary considerably across replicates.

5.6 Towards a model with no detection threshold

As described in Section 5.4, the currently available continuous models are split between those that employ a

detection threshold, below which an allele has dropped out (DNAmixtures, EuroForMix, likeLTD, LiRa and

STRmix), and one that does not employ a detection threshold, but rather models baseline noise explicitly

(TrueAllele). The removal of a detection threshold has the advantage of utilising all of the information

available in a CSP, however, it introduces some modelling difficulties.

5.6.1 Baseline noise

Perlin et al. [2011] explicitly model baseline variance in an epg, to allow for automatic determination of the

genotypes present in a particular CSP. Mönich et al. [2015] show that dye-specific effects on baseline noise

are not sufficient to describe reality, but instead locus-specific effects should be modelled. In their study of

946 single-contributor CSPs they observed that if allelic peaks, stutter peaks, and double-stutter peaks are

removed from the data, the gamma distribution gives the closest fit to the baseline data for Identifiler Plus,

but a lognormal distribution gives the closest fit for PowerPlex HS. While baseline noise is associated with

the quantity of DNA input if double-stutter peaks are retained, it appears that this relationship does not

exist once double-stutter peaks are accounted for. The authors describe a method for employing a detection

threshold based on the specific CSPs baseline characteristics, however, the eventual removal of a detection

threshold is the ultimate goal. For consistency with the current likeLTD PH model, a possible implementation

of baseline noise would assume that baseline dose would be gamma distributed, with Equation (5.2) having

an additional term νl, the expected dose from baseline noise in RFU, and the baseline peaks would be given

the same σ as all other peaks in the CSP. This is different from the Perlin et al. [2011] method of modelling

baseline noise, which assumes an expected PH at pure baseline positions as 0, because both the shape and

scale parameters of the gamma distribution must be greater than 0. In practice the majority of baseline

observations have a height of 0 [Mönich et al., 2015], so νl would be constrained to be small.
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5.6.2 Pull-up

When there is a large peak in an epg lane it can cause small artefactual peaks in the other lanes at the same

position, termed pull-up peaks. In current practice pull-up peaks are removed from the dataset manually,

however, to minimise manual interpretation for a model with no detection threshold the effects of pull-up

should be accounted for in the model. A possible implementation for a given position, i, that has some

non-baseline dose would be to add Pl,r,g,iυ to all Pl,r,g,x where υ is the pull-up proportion that denotes how

tall a pull-up peak is relative to its parent peak, and x are all positions with fi = fx other than i itself,

where f is the length of an allele in base pairs. It may be necessary for υ to be specific for every combination

of dye colours, so that e.g. peaks in the yellow lane cause larger pull-up peaks in the blue lane than in the

green lane.
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Chapter 6

Validation of the PH model

Some of the work in this chapter has been published in Steele et al. [2016], see Appendix B for the accepted

manuscript. All work, other than the Bright et al. [2015] results for models other than likeLTD and the

STRmix results for the Meredith Kercher case, was performed by me.

6.1 Motivation

I designed a set of tests to validate the model described in Section 5.2. Firstly 72 one- to three-contributor

CSPs were generated in the laboratory using DNA samples from 36 donors, for which the WoE was evaluated

using both the discrete and PH models (see Section 6.2), to ensure that the two models provide broadly

similar results. Secondly, I queried one of the laboratory generated CSPs, with altered model assumptions

to ensure the model behaves as expected e.g. not modelling double-stutter (see Section 6.3). Next, I altered

one of the laboratory generated CSPs one peak at a time to ensure that the resulting behaviour of the WoE

is congruent with the change applied to the input data (see Section 6.4). I then used the proposed PH model

to evaluate the WoE for a set of CSPs for which the WoE has previously been published with multiple DNA

analysis softwares [Bright et al., 2015]. Results were compared across the published evaluations and the PH

model evaluations (see Section 6.5). Lastly, I evaluated the WoE for real-world crime sample with multiple

models to compare how they perform in a real-world scenario (see Section 6.6).

6.2 Laboratory validation

A series of laboratory-generated CSPs were evaluated with the likeLTD PH and discrete models to compare

the behaviour of the PH model in relation to the discrete model, and in relation to the theoretical predictions

set out in Section 5.3. In particular the previous predictions implied that the PH model should have improved
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# Cont # Samples DNA mass (pg)
Approx.

cell equiv.

1
9 250 42
9 62 10
9 16 3
9 4 1

2 12 266 (250:16) 44 (42:3)
12 62 (31:31) 10 (5:5)

3
6 328 (250:62:16) 55 (42:10:3)
6 93 (31:31:31) 16 (5:5:5)

Table 6.1: Laboratory protocol for generation of single contributor and multiple contributor CSPs from 36
donated DNA samples. DNA masses and approximate cellular equivalents are rounded and given as a total
contribution, with individual contributions in brackets.

genotype inference over the discrete model in both equal- and unequal-contributions CSPs with low PH

variability, but that genotype inference may break down with high PH variability. The tests here will give an

idea of whether the PH variability for laboratory-generated mixtures is large enough to reduce the genotype

inference to the level of the discrete model. These tests should also reveal the types of CSPs for which

evaluation with a PH model is desirable, and the types for which the simpler discrete model is adequate.

6.2.1 Laboratory protocol

Cheek swab samples were collected from 36 donors. DNA was extracted using a PrepFiler Express BTATM

Forensic DNA Extraction Kit and the Life Technologies Automate ExpressTM Instrument as per the manu-

facturer’s recommendations.

Single-contributor and multi-contributor samples were created from the 36 DNA samples as shown

in Table 6.1. These created samples were amplified using the AmpF`STR R© NGMSelect R© PCR kit as

per the manufacturer’s recommendations on a Veriti R© 96-Well Fast Thermal Cycler. The amplified PCR

products were size separated by capillary electrophoresis using an ABI 3130 Sequencer, with 1 µl of the

PCR product, 10 second injections and 3kV voltage. The results were analysed using GeneMapper R© ID

v3.2 with a detection threshold of 20 RFU, and no stutter threshold, so that both allelic and non-allelic

(stutter, over-stutter or double-stutter) peaks were recorded. Mixtures were generate from the extracted

DNA samples. Approximate DNA masses are given for pre-amplification samples.

PH CSPs were converted to discrete CSPs using the rules set out in Table 6.2. Designations defaulted

to the lowest confidence of calling a peak if it had multiple possible designations e.g. C=13,14,15 and

hl=800,35,600, the 14 allele would be called as non-allelic if assumed to be an OS of the 13 allele (x = 0.044),
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Designation S DS and OS
Non-allelic x < 0.05 x < 0.05
Uncertain 0.05 ≤ x < 0.15 0.05 ≤ x < 0.1

Allelic x ≥ 0.15 x ≥ 0.1

Table 6.2: Rules for classification of peaks as stutter (S), double-stutter (DS) or over-stutter (OS) of a parent
peak when converting a PH CSP to a discrete CSP. x indicates the ratio of the stutter position PH to the
parent PH.

but uncertain if assumed to be a S of the 15 allele (x = 0.058). In this situation the allelic call defaults to

non-allelic due to the non-allelic call from the 13 parent peak. For multi-contributor CSPs, each contributor

was queried in turn, leading to 36, 48 and 36 evaluations for the single-, two- and three-contributor CSPs

respectively.

6.2.2 Single contributor

The hypotheses compared for the 36 single-contributor laboratory generated CSPs were of the form:

Hp: Q+ dropin,

Hd: X+ dropin.
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Figure 6.1: Information gain ratio (WoE/IMP) for 36 single-contributor CSPs using both the PH (x-axis)
and discrete (y-axis) models. Legend indicates the approximate DNA mass used to generate the CSPs.

116



IGR increases as the DNA mass increases, for both the PH and discrete models (Figure 6.1). IGR is

approximately equal between the two models for the majority of CSPs, as predicted by theory (see Table 5.2

and Figure 5.2). For a single-contributor CSP, PHs can give little information beyond presence/absence; PHs

may allow for a homozygote peak to be distinguished from a heterozygote peak with a dropout, however,

the results here indicate that this has little impact on the WoE in practice.

At 16pg there is one exception to the parity between the two models, in which the discrete model

returns a larger WoE than the PH model (CSP shown in Appendix Figure A.1(a)). This CSP shows high

variability through dropouts of alleles at vWA, D16, D18, D22 and SE33, all of which have corresponding

non-dropout peaks ranging from 155 to 205 RFU, making these dropouts unlikely given the height of the

non-dropout allele using the PH model, due to the penalty on σ. Under Hp the PH likelihood will be

penalised due to this high σ, whereas under Hd the peaks can be hypothesised to be homozygous, leading to

a lower penalty on σ, and a correspondingly lowered IGR. Since the discrete model does not take into account

PHs, these observations can be incorporated into a high dropout rate, with no penalty for the fact that the

corresponding non-dropout peaks are relatively tall. The PH model here is utilising the PH information to

propose an explanation that fits the data well under Hd, but which the discrete model is unable to support

as it does not have access to the PH information.

At 62pg there is greater variability from the x=y line (Figure 6.1). Appendix Figure A.1(b) shows

the CSP which gave highest discrete IGR relative to the PH IGR. This result is largely driven by locus

D1, at which an 11 allele has dropped out while the remaining non-dropout allele is observed at 282 RFU.

Once again, the penalty on σ in the PH model prevents the PH variability being large enough to adequately

explain this dropout under Hp, so the discrete model returns a greater IGR than the PH model. Appendix

Figure A.1(c) shows the CSP for which the PH model returns the highest IGR relative to the discrete model.

This is largely driven by the misclassification of the 28.2 allele at SE33 as allelic for the discrete CSP, which

must explain this as a dropin under Hp, whereas the PH model is able to explain it as a stutter peak.

At 250pg the PH model results all obtain ∼1.0 IGR, whereas the discrete model IGR is between

0.89 and 0.98. The reduction from IGR=1.0 for the discrete model is largely driven by misclassification of

stutter peaks as allelic or uncertain. Appendix Figure A.1(d) shows the CSP for which the discrete model

returns the lowest IGR at 250pg. Alleles 25, 25 and 20 at loci FGA, D12 and SE33 respectively are all

called as allelic for the discrete CSP as they are > 0.15 of the parent peak, so must be explained as dropins,

whereas the PH model can explain them as large stutters. While in a single-contributor scenario the forensic

practitioner is unlikely to mistake a stutter peak for an allelic peak, this reflects the difficulty in classifying
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Figure 6.2: Information gain ratio (WoE/IMP) for 36 CSPs with one contributor of known DNA contribution
(red), and one contributor that originates from contamination (blue), with DNA contribution estimate under
the prosecution hypothesis (x-axis).

peaks in more complex scenarios.

6.2.3 One-contributor contamination

While generating the single-contributor CSPs, a plate of the same design became contaminated with DNA

from one of the 36 donors. This provides the opportunity to investigate 35 two-contributor CSPs where

the DNA contribution of one contributor is known, and one single-contributor CSP with an unknown DNA

contribution. All 36 CSPs were queried for both contributors using the PH model with the hypotheses:

Hp: Q+ U+ dropin,

Hd: X+ U+ dropin.

Similar to the single-contributor results, when the known-contribution individual is queried the IGR

largely segregates with known DNA contribution (Figure 6.2, red). As would be expected, the IGR increases

with increasing estimated DNA contribution under Hp, χ̂p. In contrast to the single contributor results, here

four of the 4 pg CSPs return an LR in favour of Hd, which may be a result of either low DNA contribution

(< 1 cell worth of DNA) or the reduced confidence of deconvolution for a very low-template mixture.
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Figure 6.3: Information gain ratio (WoE/IMP) for 12 two-contributor equal-contribution CSPs (red) and 12
two-contributor major/minor CSPs (blue) using both the PH (x-axis) and discrete (y-axis) models. Both
contributors to each CSP were queried, with circles and crosses indicating the first- and second-contributor
respectively.

When the individual that is the source of the contamination is queried, 0 < χ̂p < 200, with

−0.2 <IGR< 0.4 (Figure 6.2, blue), ignoring the result for the single-contributor CSP, where the known

contributor is the same as the contaminant contributor. These results suggest less than 16 pg of DNA con-

taminant per CSP, or less than three cells worth of DNA. The only CSP with IGR>0.4 is that for the donor

who contaminated the other samples, with an IGR≈1.0, which suggests that the PH model is not affected

by specifying more unknown contributors than is necessary to explain the CSP: it returns χ̂ = {1e−6, 1121}

under both Hp and Hd.

6.2.4 Two contributors

The WoE for the 24 laboratory-generated two-contributor CSPs was evaluated with each contributor in turn

as Q, and hypotheses of the form:

Hp: Q+ U+ dropin,

Hd: X+ U+ dropin.

The IGR is approximately equal using the PH and discrete models when the equal-contributions

CSPs are queried (Figure 6.3, red). Two of the equal-contributions CSPs localise with the major/minor
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CSPs, which suggests that these two CSPs had a large discrepancy in contributions due to pipetting errors.

This is supported by χ̂c which give an approximate estimated contribution ratio of 1:4 and 1:3 for each

CSP, considerably different from the expected 1:1 ratio. This can be confirmed through a visual inspection

of the CSPs, given in Appendix Figures A.2(a) and A.2(c). One equal-contributions CSP returns an IGR

with the discrete model that is noticeably larger than that returned by the PH model. This CSP exhibits a

large amount of variability in PHs (Appendix Figure A.2(b)), which is exemplified at SE33 where the two

contributors have peak pairs at 98 and 327 RFU for the first contributor and 493 and 111 RFU for the

second contributor. As described in Section 5.2.1 the PH model penalises σ, meaning Lp is penalised as

the allele pairs require large variability, whereas under Hd the PH model pairs the 327 and 493 RFU peaks

together as a major contributor and the 98 and 111 RFU peaks together as a minor contributor, reducing the

required variability and so incurring less of a penalty to Ld. Using the discrete model, there is no information

regarding PHs, and therefore no concept of PH variability to penalise under Hp, leading to the higher IGR

with the discrete model in this case. Note that with no PH information, the discrete model supports all six

possible genotype pairings of the four observed certain alleles under Hd with equal weight.

All of the major/minor CSPs return an IGR that is larger with the PH model than with the

discrete model (Figure 6.3, blue), and cluster according to whether the major (circles) or the minor (crosses)

contributor was queried. When the minor is queried, the PH model returns an IGR>0 for all CSPs, while

the discrete model returns an IGR≤0 for four CSPs, supporting the false Hd. The CSPs for two of these

Hd supporting cases are given in Appendix Figures A.3(d) and A.3(b). In CSP 3 only two unmasked peaks

of the minor are called as allelic (at vWA and FGA), while in CSP 12 only five unmasked peaks of the

minor are called as allelic (two at D21, one at D18, TH01 and SE33). Determining whether or not a minor

contributor has an allelic peak in a masking position of the major contributor (either masked by stutter or

masked by allelic), is one of the more challenging tasks a forensic scientist has to deal with when calling

alleles for a discrete model. This can be seen in both of these CSPs where a number of allelic peaks of the

minor have been called as non-allelic, being below the stutter (one of x-n, x-2n or x+n) threshold of one

of the peaks of the major contributor. Utilising a continuous model removes this difficulty, as there is no

need to call any peaks; the PH model instead estimates what is the most likely genotype of each contributor,

given the observed CSP peaks and estimated model parameters. When querying the major contributor the

majority of PH IGRs are ∼1.0, so the PH model has correctly identified the genotype of Q/X under Hd,

while the discrete IGRs range from ∼ 0.4− 0.8, so the discrete model has been unable to correctly identify

the major genotype. The CSP that returns an IGR close to 1.0 using the PH model, but the lowest IGR
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Figure 6.4: Information gain ratio (WoE/IMP) for 10 two-contributor major/minor contribution CSPs com-
paring the major as unknown (y-axis) with major as known (x-axis) using the PH model (left) or the discrete
model (middle), or comparing the discrete model (y-axis) with the PH model (x-axis) when the major is
known (right).

with the discrete model is given in Appendix Figure A.3(a), where at loci with < 4 peaks called as allelic Hp

will support multiple genotypes for the minor contributor using the discrete model, whereas the PH model

will sometimes support a single genotype for the minor contributor, dependent on PH variability. Likewise,

under Hd the discrete model will give equal weight to the possible genotypes (see Figure 5.3), whereas the PH

model will give the majority of the weight to a single or a few, but fewer than the discrete model, genotype

combinations. Two CSPs gave a WoE considerably below the maximum with both the discrete and PH

models, the most extreme of which is shown in Appendix Figure A.3(c). The maximum RFU for this CSP

is 572 RFU at a homozygous allele of the major contributor, in contrast to RFUs between 1500 and 3000 in

the other major/minor CSPs. This suggests that less DNA was introduced into the reaction than intended,

resulting in the correspondingly lower WoE with both models.

6.2.5 Major as a known contributor

For the major/minor mixtures in the previous section, the difference in peak contributions is often enough

to be able to manually deconvolute the major contributor, at which point they can be included in the

hypotheses as a known contributor. This was done for all major contributors that gave an IGR > 0.95 in

the two-contributor IGR evaluations. This closely matches forensic practice when a CSP includes a clear

unknown major contributor, giving the hypotheses:

Hp: Q+ K+ dropin,

Hd: X+ K+ dropin.
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Using the PH model, the IGR assuming the major contributor as known is approximately equal to

that assuming major contributor as unknown (Figure 6.4, left) indicating that the PH model is able to fully

distinguish the unknown genotype of the major contributor in these cases under both Hp and Hd.

Conversely, when the discrete model is used, the IGR assuming the major contributor as known is

always greater than that assuming the major contributor as unknown (Figure 6.4, middle). The discrete

model supports many genotype combinations under Hd when the major contributor is unknown, but these

genotypes are restricted to those for which GU1 = GK when the major contributor is assumed known.

Thus the discrete model supports fewer genotypes under Hd with the major contributor as known than

unknown, increasing the IGR. The same effect is seen under Hp, where the discrete model supports multiple

genotypes for U when the major contributor is unknown, but is restricted to a single genotype when the

major contributor is known.

When, instead, the IGR from the PH and discrete models is compared assuming the major contrib-

utor as known, the PH model returns a greater IGR than the discrete model in all cases but one (Figure

6.4, right), as predicted by theory. Notably, three cases provide support for Hd using the discrete model,

but provide support for Hp using the PH model, which is known to be true here. In all three of these cases

some allelic peaks have been called as non-allelic for the discrete CSP (2 peaks in two cases, 5 peaks in the

third case). While this is a direct result of the allele calling used for the discrete CSPs, it does mimic the

difficulties faced when a forensic practitioner is calling peaks that are in masking positions. Moreover, a

number of these mis-called peaks are below the detection threshold routinely employed by forensic labs (50

RFU), and so would not have been available to analyse in normal practice, regardless of having been called

as non-allelic due to stutter ratio.

Also of note is the CSP that returns a greater IGR with the discrete model than the PH model

(Figure 6.4, right, discrete IGR ≈ 0.55). This discrepancy is largely driven by a high PH variability in this

CSP (Appendix Figure A.3(a)) which leads to incorrect genotype inference for X under Hd using the PH

model, but in ways that are consistent with the PH information. At D22 (GQ=11,11) the PH model supports

heterozygous genotypes due to the low PH of the 11 peak (251 RFU). At D12 (GQ=18,23) the PH model

assigns the 18 peak as stutter of the major 19 peak. At D1 (GQ=12,14) the PH model estimates that the

minor and major share an allele at the highest peak, whereas the discrete model estimates that they share

an allele at the lower of the two major peaks. At D2S441 (GQ=10,11) a shared major/minor peak is lower

than an unshared major peak, so the PH model instead assigns the taller peak as shared and the lower peak

as unshared. At each of these loci the prosecution explanation is contrary to the data when PHs are taken
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Figure 6.5: Information gain ratio (WoE/IMP) for 6 three-contributor equal contribution CSPs (red,
31:31:31pg) and 6 three-contributor unequal contribution CSPs (blue, 250:64:16pg) using both the PH
(x-axis) and discrete (y-axis) models. The six cases of each condition are represented by square, circle,
up-triangle, down-triangle, diamond and star symbols. Each contributor to the CSPs was queried in turn,
with empty, filled and crossed symbols indicating the first-, second and third-contributor respectively as Q.

into account due to high PH variability, but fits the data better when PHs are not included, so discrete IGR

> PH IGR. This once again highlights the difficulty of dealing with PH variability in PH models.

6.2.6 Three contributors

The hypotheses for the three-contributor CSPs were of the form:

Hp: Q+ U1 + U2,

Hd: X+ U1 + U2.

Dropin was not included for the three-contributor CSPs to reduce computation time for the PH

model; many dropin alleles will be able to be explained as a stutter/double-stutter/over-stutter of one of the

allelic peaks.

When three-contributor equal-contribution CSPs are queried (Figure 6.5, red) the IGR is close to

equal between the discrete and PH models for the 18 evaluations. One WoE evaluation (blank diamond)

supports Hd with both models (Appendix Figure A.4(b)). Many of the alleles of Q have dropped out in this

CSP with both models, and many more are masked. When the first contributor of CSP 4 (Appendix Figure
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A.4(a)) is queried, the PH model supports Hp, while the discrete model supports Hd (blank circle). Seven of

the alleles of Q have dropped out, which still supports Hp with the PH model due to a low estimated DNA

contribution (χ̂p = 41.9 RFU).

When unequal-contribution CSPs are queried (Figure 6.5, blue) seven evaluations are at parity

between the two models, while 11 evaluations return a larger IGR with the PH model. All six CSPs obtain

an IGR ordering of IGR250 >IGR62 >IGR16 for both models, as would be expected. Of the seven evaluations

that are at parity between the two models, three correspond to CSP 5 (downward-triangle symbols). This

CSP (Appendix Figure A.5(d)) consists of 13 loci with no peaks observed, one locus with a single dropin

peak observed (D8), a locus where peaks are observed from each contributor (D2S1338), and a locus where

peaks are only observed for the 62 pg and 250 pg contributors (SE33). Querying this CSP gives limited

support for Hp when the 250 pg (blank down-triangle) and 62 pg (filled down-triangle) contributors are

queried and limited support for Hd when the 16 pg contributor is queried (crossed down-triangle) under

both models. Querying the minor contributor of CSP 2 (crossed circle) provides support for Hd with both

models, but stronger support with the discrete model. Six alleles of Q have dropped out (Appendix Figure

A.5(b)). For the discrete model two and seven alleles of Q have been called as non-allelic and uncertain

respectively, of which one of the uncertain alleles is homozygous. For the PH model nine allelic peaks can

be explained well as stutters from major contributors, reducing the likelihood that Q contributes. When the

minor contributor of CSP 1 is queried (crossed square) the PH IGR is approximately 0.3 greater than the

discrete IGR, because of two uncertain and two non-allelic calls for alleles of Q (Appendix Figure A.5(a)).

When the major contributor of CSP 4 is queried (blank diamond) the PH IGR is approximately 0.6 greater

than the discrete IGR, because the PHs support a single genotype at each locus, while the discrete model

supports multiple genotypes.

6.2.7 Runtime

Mean runtime for the laboratory validation CSPs was 5, 10 and 92 minutes for single-, two- and three-

contributor CSPs respectively, with all evaluations completing in under four hours (Figure 6.6).

6.2.8 Laboratory conclusions

The results presented here demonstrate that the PH variability in these laboratory-generated CSPs is not

large enough to break down genotype inference for unequal-contributions CSPs with the PH model, leading

to higher IGRs with the PH model. Conversely, the PH variability is large enough to reduce the ability of
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Figure 6.6: Runtime for the laboratory validation evaluations. Hypotheses included dropin for the single-
and two-contributor evaluations, three-contributor evaluations did not include dropin. Horizontal dashed
lines indicate whole hours.

the PH model to infer contributor genotypes to that of the discrete model when contributors are represented

equally, leading to approximately equal IGRs between the PH and discrete models.

The problem of PH variability is highlighted for CSPs where the discrete model returns greater IGRs

than the PH model; the PH model utilises PH information to form incorrect inferences about the genotypes

of the contributors, but these inferences are those that best fit the data.

These results suggest that evaluation with a PH model is desirable for unequal-contributions mix-

tures, especially for a queried minor contributor where a more extreme WoE in favour of the true hypothesis

is desirable. Conversely, for CSPs that appear to have contributors at equal representations, a discrete model

should be adequate to utilise all of the information available in the CSP, as PH variability diminishes the

information available in PHs for genotype inference.

Throughout the laboratory validation tests, the detection threshold used to generate the discrete

CSPs was 20 RFU. However, forensic laboratories normally use a detection threshold of 50 RFU for dis-

crete analyses, so many low-level peaks are observed in these discrete CSPs that would not be observed in

normal practice. This means that these results overstate the power of the discrete model in usual practice,

especially for very low-level contributors. Over the CSPs tested, there are a total of 31 peaks of the var-

ious queried contributors that are <50 RFU in the single-contributor cases, 63 and 100 such peaks in the
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two-contributor major/minor and equal contributions cases respectively, and 19 and 51 such peaks in the

three-contributor unequal and equal contributions cases respectively; this information supporting Hp would

usually be unavailable to the discrete model.

6.3 Altering the model assumptions

One of the laboratory CSPs was evaluated, with differing modelling assumptions; all combinations of mod-

elling double- and over-stutter, modelling dropin, and removing the locus-dependency of the stutter gradient.

This verifies that the WoE for the chosen CSP behaves as expected with the various model assumptions. If

a modelling assumption is not important for explaining any feature of the given CSP, it should have little

impact on the WoE. Conversely, if a CSP cannot be well explained without a given modelling assumption,

altering that assumption should have a large effect on the WoE.

6.3.1 Protocol

One of the three-contributor CSPs was evaluated using just the PH model with hypotheses of the form:

Hp: Q(16pg) + K1 (250pg) + U1,

Hd: X+ K1 (250pg) + U1.

The CSP was evaluated with varying assumptions of the model; whether or not to model dropin,

double-stutter, over-stutter or a locus-specific stutter gradient.

6.3.2 Results

Modelling dropin does not change the WoE for this CSP (Table 6.3), as dropin is not necessary to explain

the CSP when double- and over-stutter are both modelled, as evidenced by the dropin estimates of 5 and

5 RFU under Hp and Hd respectively, equal to the minimum dropin value of 5.0. Similarly, removing

double-stutter from the model does not change the WoE as there are no peaks in the CSP that can only

be explained through double-stutter. Conversely, removing over-stutter from the model reduces the WoE,

particularly because the 17 peak at D22 can no longer be explained by over-stutter (D22 WoE decreases

from -0.5 bans with SDO to -0.8 and -0.7 bans with SD and S respectively), so must be assumed to be allelic

by the program. D22 is subject to over-stutter more commonly than any other locus in the NGM SelectTM

kit due to being the only locus with repeat units that are three base pairs long, rather than the standard
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Alterations Basic Stutter model
SDO SDO+dropin SD+dropin SO+dropin S+dropin αl = 1

Parameters
Dropin FALSE TRUE TRUE TRUE TRUE FALSE
D TRUE TRUE TRUE FALSE FALSE TRUE
O TRUE TRUE FALSE TRUE FALSE TRUE

WoE
D10S1248 0.6 0.6 0.6 0.6 0.6 0.6
vWA 1 1 1.1 1.1 1.1 1.1
D16S539 0.5 0.5 0.5 0.5 0.5 0.5
D2S1338 0.5 0.5 0.4 0.5 0.4 0.6
D8S1179 1.1 1.1 0.9 1.1 0.9 1.1
D21S11 1.7 1.7 1.7 1.7 1.7 1.7
D18S51 1 1 1 1 1 1.1
D22S1045 -0.5 -0.5 -0.8 -0.5 -0.7 -0.5
D19S433 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8
TH01 0.5 0.5 0.5 0.5 0.5 0.5
FGA 0.6 0.6 0.5 0.6 0.5 0.5
D2S441 1.2 1.2 1.2 1.2 1.2 1.2
D3S1358 0.7 0.7 0.7 0.7 0.7 0.7
D1S1656 0.7 0.7 0.7 0.7 0.7 0.7
D12S391 1.4 1.3 1.3 1.4 1.3 1.3
SE33 0.1 0.1 0.1 0.1 0.1 0.1
Overall 8.2 8.2 7.6 8.2 7.7 8.4

Table 6.3: Locus and overall WoE for a chosen three-contributor laboratory-generated CSP, with altered
assumptions of the model. Column three models dropin, columns four to six alter whether double or over
stutter are being modelled while column seven removes the locus dependency on the stutter gradient.

four base pairs. In the PH model the stutter ratio is assumed linear with the LUS of the allele, with the

gradient of the linear relationship allowed to differ between loci through a locus adjustment parameter (α)

that is a multiplicative adjustment to the mean gradient over loci. When the stutter gradient is instead

assumed to not vary between loci (αl=1) the WoE increases to 8.4 bans. This change in WoE is driven by

the defence likelihood at D2S1338; at this locus GQ=17,22 but the most likely GX=17,18 meaning that the

truly allelic peak at 22 is estimated to be stutter from one of the majors under Hd (GK1=18,23), requiring

a large stutter gradient which is not possible when the stutter gradient cannot vary by locus. This means

that the defence hypothesis has a higher likelihood at D2S1338 when the stutter gradient is allowed to vary

by locus, leading to a lower locus LR with a locus variant gradient (0.46) than with a fixed gradient (0.61).

6.3.3 Conclusions

As expected, the WoE is only altered when a modelling assumption that is important in explaining the

features of the CSP is removed. The features range from as simple as a peak in a position that can or cannot
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be explained by the modelling assumptions, to more complicated features such as the variance of stutter

gradients between loci. From these, it is clear that a simplistic model that assumes a constant stutter rate

across the epg, or that cannot model over- or double-stutter, is not sufficient to adequately explain all of the

features of this complex CSP, justifying the complexity of the PH model.

6.4 Artificially altering the input data

One of the single-contributor laboratory-generated CSPs was altered one peak at a time, either introducing

peaks that had dropped out, altering the PH of observed peaks, or introducing dropin peaks. Introducing

a dropped out peak of Q is expected to increase the WoE against Q, removing a peak of Q is expected to

decrease the WoE against Q and introducing a dropin peak is expected to decrease the WoE against Q.

These are all intuitive expectations, which, if violated, would call into question the validity of the model.

Additionally, changes in peak heights that require greater variance of peak heights to explain the CSP under

Hp should decrease the WoE and vice versa; this expectation stems from the results seen in Section 6.2,

where high PH variability reduced the WoE against Q due to impaired genotype inference.

6.4.1 Protocol

The single-contributor CSP from donor 26 (16 pg DNA, approximately equivalent to 3 cells) was chosen to

investigate the behaviour of the PH model when altering the CSP, as it had a mixture of locus dropouts

(both heterozygote and homozygote), single dropouts (heterozygote) and non-dropouts (both heterozygote

and homozygote), so that the behaviour could be investigated at each of these classes of observation. See

Table 6.4 for a summary of the alterations made to the CSP.

6.4.2 Insertion of a missing peak

A peak at the location of a single allele of Q which had dropped out was added to the CSP with varying

PH. This was done at three separate loci with:

1. No observed peaks, Q is homozygous (D16): homozygous locus dropout.

2. No observed peaks, Q is heterozygous (D19): heterozygous locus dropout.

3. One observed peak, Q is heterozygous (D18): heterozygous single dropout.
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Locus GQ CSP Observation Alteration

D16 13,13 ∅ Dropout of homozygous 13 allele
Reintroduction of 13 allele

Introduction of 11 or 15 dropin peak

D18 14,17 14 Dropout of heterozygous 17 allele
Reintroduction of 17 allele

Introduction of 8 or 12 dropin peak

D22 15,17 15,17 Fully observed heterozygote
Alteration of peak height at allele 17
Introduction of 16 or 19 dropin peak

D19 13,14 ∅ Full heterozygous dropout
Reintroduction 13 allele

Introduction of 15 or 18 dropin peak

TH01 6,6 6 Observed homozygote allele
Alteration of peak height at 6

Introduction of 8.3 or 9.3 dropin peak

FGA 23,25 25 Dropout of heterozygous 23 allele
Alteration of peak height at 25

Introduction of 21 or 22.1 dropin peak

Table 6.4: Alterations applied to a single-contributor 16pg CSP at six loci. GQ indicates the genotype of Q,
the true contributor. ∅ under CSP indicates no observed peaks above the detection threshold at that locus.
Observation gives the true effect seen at the locus. Alteration gives the two changes that were made at
each locus. Reintroductions of dropped-out alleles ranged from 0 to 61 RFU, introductions of dropin peaks
ranged from 0 to 61 RFU and alterations of observed peaks ranged from 0 to 151 RFU.
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Figure 6.7: (a) The single-contributor CSP for which PHs were altered. Vertical dashed lines indicate the
position of dropped-out alleles that were inserted. (b) WoE for a single CSP when a dropped out allele is
artificially inserted at differing RFUs.
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Inserting a homozygous dropout peak of Q increases the WoE from ∼8.6 bans to ∼9.3 bans, which

increases to >9.6 bans at 61 RFU (Figure 6.7, red).

Inserting a heterozygous dropout peak of Q for which the corresponding allele was observed increases

the WoE from ∼8.6 bans to ∼9.5 bans (Figure 6.7, purple); a larger increase than when a homozygous allele

was inserted. However, the WoE increases by a smaller amount as the RFU of the inserted peak increases,

reaching ∼9.6 bans at 61 RFU. Below 40 RFU, an insertion of a homozygous dropout gives a lower WoE

against Q than an insertion of a heterozygote single dropout. This reverses above 40 RFU. This is intuitive,

as a small heterozygous peak is more likely than a small homozygous peak, leading to a greater WoE for the

heterozygous peak at small RFUs. Similarly, a large heterozygous peak is less likely than a large homozygous

peak, leading to a greater WoE for the homozygous peak at large RFUs.

Inserting a heterozygous dropout peak of Q for which the corresponding allele also dropped out

increases the WoE initially from ∼8.6 bans to ∼9.0 bans (Figure 6.7, purple). The WoE decreases with

increasing RFU, reaching ∼8.8 bans at 61 RFU. The variability in PHs required to explain the remaining

dropout allele with the observed inserted allele under Hp increases with increasing RFU of the introduced

peak, increasing the penalty on σ, so reducing the WoE.

6.4.3 Altering observed CSP peaks

A single peak in the CSP was given an altered RFU, from below the detection threshold (shown as 0 RFU

here, analogous to dropout) to 150 RFU. This was performed for peaks at three separate loci with:

1. One observed peak, Q is homozygous (TH01): homozygous peak.

2. One observed peak, Q is heterozygous (FGA): heterozygous peak with dropout.

3. Two observed peaks, Q is heterozygous (D22): heterozygous peak.

When the PH of a homozygous peak of Q is altered, the WoE has a strong positive relationship with

the RFU of the peak (Figure 6.8, red), and decreases from ∼8.3 bans at 21 RFU to 7.6 bans when the peak is

removed. The WoE increases between 21 and 151 RFU, because the normalised posterior Pr(GX = GQ) under

Hd increases as the RFU of the peak increases. Below 91 RFU the most likely genotype is heterozygous,

including the 6 allele. At 91 RFU and above, the most likely GX is a 6,6 homozygote, which is the true

genotype of X.

When the PH of a heterozygous peak of Q for which the corresponding allele dropped out is altered,

the WoE has a weak negative relationship with the RFU of the peak (Figure 6.8, purple), and decreases from
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Figure 6.8: (a) The single-contributor CSP for which PHs were altered. Vertical dashed lines indicate the
position of peaks that were altered. (b) WoE for a single CSP when the PHs of an observed peak is artificially
altered, from 0 RFU to 151 RFU. Crosses and the dashed horizontal line indicate the WoE and RFU when
no peak is altered.

∼8.6 bans at 21 RFU to ∼8.0 bans when the peak is removed. The WoE decreases with increasing RFU

because a homozygous genotype is given increasing weight under Hd as the RFU of the peak increases, so

Hd fits the data better as the PH increases relative to Hp.

When the PH of a heterozygous peak of Q for which the corresponding allele was also observed is

altered, the WoE decreases slightly as the RFU of the peak deviates from that observed in the unaltered

CSP (Figure 6.8, blue). The WoE decreases from ∼8.6 bans at 21 RFU to ∼7.4 bans when the peak

is removed. The WoE decreases as the RFU moves away from the unaltered CSP because the increased

variability increases σ under Hp, which is penalised. However, the reduction in WoE is small because σ is

penalised under both Hp and Hd due to increasing PH variability.

The WoE against Q is greater when full locus heterozygous dropout was introduced than when a

single heterozygous dropout was introduced (Figure 6.8, RFU=0, blue and purple); this is counter-intuitive,

as an extra observed allele may be thought to increase the WoE against Q. This is due to the increased PH

variability under Hp introduced by a single heterozygous dropout. Dropout of a homozygous allele gives a

greater WoE against Q than a single heterozygous dropout (Figure 6.8, RFU=0, red and blue), because the

increased PH variability under Hp with a single heterozygous dropout increases the penalty on σ. Dropout of

a homozygous allele gives a lower WoE against Q than full locus heterozygous dropout (Figure 6.8, RFU=0,

131



Locus
Common Rare

Allele Probability Allele Probability
D16S539 11 0.317 15 7.84e-4
D18S51 12 0.149 8 3.92e-4

D22S1045 16 0.369 19 1.18e-3
D19S433 15 0.179 18 3.92e-4

TH01 9.3 0.334 8.3 1.17e-3
FGA 21 0.179 22.1 3.92e-4

Table 6.5: Dropin alleles that were inserted into the donor 26 16 pg DNA CSP. Common alleles were chosen
as the highest frequency allele in the DNA17 NDU1 database not-shared with Q. Rare alleles were chosen
as the lowest frequency allele in the database.

red and purple); homozygous dropout is less likely than locus dropout due to the increased expected PH for

a homozygous allele.

6.4.4 Insertion of a dropin (non-Q) peak

A single peak was inserted into the CSP at the six previously altered loci, with the newly inserted peak being

at a non-Q allele, simulating a dropin event. At each of the six loci both the highest frequency non-Q allele

and lowest frequency allele in the DNA17 NDU1 database (Caucasian) were inserted separately. Inserted

alleles and population probabilities (without sampling or FST adjustment) are given in Table 6.5.

At all loci, introducing a dropin peak decreases the WoE from the non-dropin WoE of 8.6 bans to

between 7.0 and 8.5 bans (Figure 6.9). For all conditions the WoE is further reduced as the PH of the dropin

peak increases from 21 RFU to 61 RFU. The reduction in WoE varies substantially between loci, ranging

from 0.05 bans at D22 with a 21 RFU dropin of a common allele to 1.6 bans at D19 with a 21 RFU dropin

of a rare allele.

At D22 (red) both of the alleles of Q are observed in the CSP, plus the third introduced dropin peak.

The WoE with introduction of a common (solid line) or rare (dashed line) allele diverges as the RFU of the

introduced peak increases. Under Hp the dropin peak must be assigned as a dropin, which is more plausible

for a common allele than for a rare allele, and becomes increasingly implausible as the RFU of the dropin

peak increases because the non-degradation-adjusted dropin dose at each allele is linear with px. Under Hd

the model correctly assigns the peak as dropin when it is a common allele, but incorrectly assigns an allele

of Q as dropin at 61 RFU when the true dropin peak is rare. This incorrect assignment explains the data

better than the true circumstances can, because an allelic assignment has no effect of px on the expected

dose, so Hd has a relatively better fit than Hp when the dropin is rare compared to when it is common, which

results in the WoE dropping more with increasing RFU for the rare dropin than for the common dropin.
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Figure 6.9: Weight-of-evidence for a single-contributor 16 pg DNA CSP when a single rare or common
dropin peak is inserted at one of six loci. See Table 6.5 for inserted alleles and their associated population
probabilities.

At TH01 (yellow), FGA (orange) and D18 (blue), a single allelic peak (homozygous, heterozygous

and heterozygous respectively) was observed in the CSP, plus the introduced dropin peak. At these loci, Hd

explains the CSP as a heterozygous genotype composed of the observed true-allelic peak and the introduced

dropin peak. The Hp explanation of a dropout and a dropin fits poorly when the dropin peak is rare, while

the Hd explanation fits well for both common and rare dropins, so the WoE is lower for a rare dropin than

for a common dropin.

At D16 (green) and D19 (purple) no peaks were observed in the original CSP, so the CSPs here

consist of just the dropin peak. When the dropin peak is common in the population, under Hd the model

explains the observed peak as heterozygous at low RFU, but switches to explaining it as homozygous at high

RFU. Conversely, when the dropin peak is rare a homozygote is a priori unlikely, as under Hardy-Weinberg

assumptions the probability of a homozygote is p2Z , which is 6.1e-7 and 1.5e-7 for the rare dropin allele

at D16 and D19 respectively. For a common dropin the Hd explanation of a common homozygous allelic

peak has an increasingly better likelihood compared to the Hp explanation of a common dropin as the RFU

increases, reducing the WoE. However, for a rare dropin, the Hd explanation of a rare heterozygous peak

does not increase its likelihood as much when the RFU increases, while the Hp explanation also performs

less well as the RFU increases, so there is less discrepancy between the Hp and Hd explanations, leading to
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the lower reduction in WoE.

6.4.5 Conclusions

The PH model adheres to all expected behaviours when the input data are altered; the WoE against Q

decreases when an allele of Q is dropped out, a non-Q dropin allele is introduced or when PH variability

is increased, while the WoE increases when a dropped out allele of Q is introduced or the PH variability is

decreased.

These results highlight the importance of PH variability to the behaviour of the model, with some

seemingly counter-intuitive results making sense in the light of required PH variability under each hypothesis.

For example dropout of homozygous allele of Q should intuitively decrease the WoE against Q by more than

a dropout of a heterozygous allele. However, the increased PH variability introduced when a heterozygous

allele is dropped out for which the corresponding allele was observed leads to a greater reduction in WoE,

going against intuition.

6.5 Published results comparison

A set of artificial CSPs for which the evaluated WoEs with a number of models has been published was

evaluated with the likeLTD PH model. These evaluations are useful to benchmark the likeLTD PH model

against both discrete and continuous models, on CSPs for which the ground truth is known. Due to the

design of the CSPs, these evaluations should also reiterate the results seen in Section 6.2, as these CSPs also

consider both major/minor and equal-contributions mixtures.

6.5.1 Published data

Bright et al. [2015] recommended a series of tests for validating probabilistic software, for which they pub-

lished results using STRmix, and two discrete models, LRmix and LabRetriever. Here the PH model

described in Section 5.2 will be referred to as likeLTD, as it has been published in a CRAN package of the

same name. Bright et al. [2015] assigned genotypes for two individuals, from which they generated single-

and two-contributor CSPs. Parameter and modelling choices were selected to make the evaluation with

likeLTD compatible with both the data generation process and the STRmix evaluation; tl = 50, no DS or

OS, FST=0.01, sampling adjustment=0.

There are assumptions in the STRmix model that may have been included when generating the
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CSPs, that may differ from the assumptions of likeLTD. These differences are unlikely to affect the results

to a large extent, however, it is useful to highlight them:

Stutter: The STRmix stutter model [Bright et al., 2013c] is analogous that of likeLTD, with a locus-specific

linear relationship with LUS, however, likeLTD assumes an intercept of 0, while STRmix models the

intercept fully. For alleles with an unknown LUS value, STRmix assigns a LUS value equal to the allele

designation, while likeLTD extrapolates or interpolates the unknown LUS value.

Locus effects: STRmix allows different loci to have different amplification efficiencies, resulting in different

expected RFU values at each locus, while likeLTD does not model this. This is expected to lead to

increased amplification efficiency at low molecular weight loci, and higher RFU values at those loci, so

can partially be accounted for by degradation with likeLTD.

6.5.2 Results

Case Q Hp nU Dropin likeLTD LRmix LabRetriever STRmix

SS1 1 TRUE 0 FALSE 18.8 18.8 18.8 18.8
SS1 2 FALSE 0 TRUE -61.0 NA NA NA

SS2 1 FALSE 0 TRUE -48.8 NA NA NA
SS2 2 TRUE 0 FALSE 19.6 19.6 19.6 19.6

Bal 1 TRUE 1 FALSE 10.1 9.0 9.0 9.8
Bal 2 TRUE 1 FALSE 11.0 10.0 10.0 10.6

MM 1 TRUE 1 FALSE 18.8 18.5 18.5 18.5
MM 2 TRUE 1 FALSE 19.6 16.3 16.2 19.3

Stochastic 1 TRUE 1 FALSE 18.6 NA NA 18.5
Stochastic 2 TRUE 1 FALSE 19.3 11.4 12.0 15.7

Table 6.6: [WoE for Bright et al. [2015] cases using the likeLTD peak height model, LRmix, LabRetriever
and STRmix.] Q indicates the reference profile used as the queried contributor, Hp indicates whether or
not Q is a contributor to the CSP, while nU indicates the number of unknown contributors assumed under
Hp. Dropin indicates whether dropin was modelled for likeLTD, and was only used when a non-contributor
Q was queried for a single-contributor case. The IMP for reference profiles 1 and 2 are 18.8 and 19.6 bans
respectively. Blank cells are present for SS1 and SS2 because Bright et al. did not query the non-contributor
for single-contributor CSPs. Blank cells are present for Stochastic because Bright et al. did not perform a
calculation with LRmix or LabRetriever for the Stochastic CSP.

For a single contributor CSP all four programs return WoE = IMP for a true Q (Table 6.6, SS1

and SS2). These CSPs have no stutter peaks, dropout or dropin, so normalised P (E|GX = GQ) = 1, and
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the LR simplifies to 1/P (GQ) = IMP for all programs. This is achieved under continuous models (likeLTD

and STRmix) by
∏
i∈I P (hi|E(hi), φ) being equal under Hp and Hd for GQ. For discrete models this is

achieved by estimating D = 0. Bright et al. [2015] did not query the corresponding non-contributor for each

single-contributor CSP, but likeLTD gives a WoE that supports Hd for non-contributor evaluations.

For a Major/minor mixture (MM, Table 6.6) the likeLTD WoE is equal to the IMP for both con-

tributors. The minor contributor (Q=2) contributes enough DNA (χ̂c ≈ 590 under Hp and Hd) to obtain

full information about their genotype. Estimated DNA contributions are approximately 1770 and 590 RFU

for the major and minor respectively, so a shared allele has expected PH of approximately 2360 RFU, which

likeLTD can distinguish from the expected PH of a heterozygous unshared major allele. As an example from

the CSP, at D21 CD21=28,29,30,31 with hD21=103, 2046,1487,482 RFU; the shared 29 allele is clearly distin-

guishable from the unshared major allele at 30. This may not be possible for CSPs with higher variability in

PHs or a lower contribution of the minor. STRmix returns WoEs that are slightly lower than likeLTD WoEs

for both contributors, whereas LabRetriever and LRmix return significantly reduced WoEs when querying

the minor contributor.

When the average RFU of the minor contributor is decreased to below the stochastic threshold

(Stochastic, Table 6.6) the likeLTD WoE for the minor contributor (Q=2) falls to three decibans below the

IMP, due to reduced DNA contribution (χ̂c ≈ 190 under both Hp and Hd, close to the published average

profile PH of 180 RFU). The estimated DNA contributions are approximately 190 and 3000 RFU for the

major and minor contributors respectively, so a shared major/minor peak may not be distinguishable from

an unshared heterozygous major peak, reducing the WoE for the minor contributor. The WoE of the major

contributor (Q=1) remains at the IMP. The STRmix WoE is unchanged for the major contributor, but

is reduced by 3.6 bans for the minor contributor. The WoE for the minor contributor from LRmix and

LabRetriever is reduced by 4.9 and 4.2 bans respectively.

When the mixture has equal contributions (Bal, Table 6.6) the WoE for both contributors drops

significantly. Genotype deconvolution is more difficult, so multiple genotypes will be supported under Hd

(see Table 5.3 and Figure 5.3). The likeLTD WoE falls by 8.6 and 8.3 bans for the first and second reference

respectively when compared to the Stochastic case. The STRmix WoE falls by 8.7 and 5.1 bans respectively.

The WoE for the second reference falls by 1.4 and 2.0 bans for LRmix and LabRetriever respectively. When

two contributors have equal contributions, and an allele is observed that appears to have a double dose,

then it is not possible to determine whether the peak is homozygous for contributor A, homozygous for

contributor B or shared heterozygous between the two contributors using PHs, just as it is not possible to
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determine whether a single dose peak originates from contributor A or B; the same is true of discrete models,

so all four programs return similar WoEs.

6.5.3 Conclusions

These results mirror those seen in Section 6.2 with the continuous models, likeLTD and STRmix, providing

greater WoEs for a true Q than the discrete models, LRmix and LabRetriever, for unequal-contributions

mixtures, especially for a minor contributor. The continuous and discrete models provide similar WoEs for

equal-contributions mixtures, or for single-contributor CSPs.

6.6 Real case comparison: Meredith Kercher

A CSP from a real-world crime was evaluated with three continuous models. This comparison benchmarks

the models against each other, but in a real-world scenario rather than for the artificial CSPs evaluated in

Section 6.5. Assuming that all of the models are valid, the results obtained with each should be similar.

6.6.1 Case circumstances

In November 2007, Meredith Kercher was murdered in her flat in Perugia, Italy. While Rudy Guede was

tried and convicted for the crime in under a year with little controversy, the accusation that Raffaele Sollecito

and Amanda Knox were involved in the murder was much more controversial. The two were found guilty in

December 2009, acquitted in October 2011, found guilty again in January 2014, and finally ruled innocent

by the highest court in Italy in March 2015. One of the key, and controversial, pieces of evidence in the case

against Knox and Sollecito was Meredith Kercher’s bra clasp, item 165B, found on the floor of the room

Meredith was murdered in, over a month after the murder occurred. Here, the WoE of the epg arising from

the bra clasp for both Knox and Sollecito to be a contributor will be evaluated using the likeLTD, STRmix

and EuroForMix PH models. The hypotheses compared are of the form:

HS
p : Q (Raffaele Sollecito) + K1 (Meredith Kercher) + U1,

HS
d : X + K1 (Meredith Kercher) + U1,

and:

HK
p : Q (Amanda Knox) + K1 (Meredith Kercher) + U1,

HK
d : X + K1 (Meredith Kercher) + U1.
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Program likeLTD STRmix EuroForMix
Q Sollecito Knox Sollecito Knox Sollecito Knox
t 20 50 20 50 50 50 20 50 20 50

D8 0.6 0.7 0.3 -0.2 0.2 1.0 0.5 0.8 0.4 -0.2
D21 0.7 0.5 0.0 -0.1 0.8 0.1 0.9 0.8 0.2 0.1
D7 0.5 0.4 -0.1 -0.2 0.5 -0.4 0.5 0.5 -0.4 -0.1

CSF 0.7 0.7 -0.1 -0.1 0.3 0.0 0.4 0.6 0.0 0.0
D3 1.0 0.8 0.1 -0.4 0.8 0.4 1.0 1.0 -0.1 -0.2

TH01 1.1 1.1 -0.1 -0.3 0.8 -0.6 0.9 1.2 -0.3 -0.3
D13 0.8 0.7 0.1 0.0 0.7 -0.3 0.8 0.8 0.0 -0.1
D16 0.7 0.8 0.0 0.0 0.9 0.0 0.6 0.7 0.2 0.1
D2 2.5 2.4 -0.1 0.1 1.6 0.5 2.0 2.1 0.6 0.0
D19 1.4 1.3 -1.1 -0.9 1.4 -1.4 1.8 1.6 -1.5 -1.4
vWA 1.6 1.5 0.0 -0.2 1.9 -0.7 1.7 1.8 -0.8 -0.4

TPOX 0.9 0.9 0.0 -0.1 0.7 0.1 0.5 0.7 -0.2 -0.1
D18 1.3 1.4 0.1 0.2 1.2 0.3 1.2 1.4 0.4 0.3
D5 -0.3 -0.4 0.0 0.0 0.0 0.3 -0.3 -0.5 0.1 0.1

FGA -0.9 -1.2 0.0 0.0 0.0 0.1 -0.4 -0.5 0.4 0.0
Overall 12.5 11.5 -0.9 -2.3 11.8 -0.7 12.0 13.0 -1.1 -2.1

Table 6.7: Locus and overall weight of evidence (WoE) for the epg generated from item 165B (bra clasp) in
the Kercher case. WoE was evaluated against Raffaele Sollecito or Amanda Knox with a detection threshold
(t) of 20 or 50, and with three continuous models; likeLTD, STRmix and EuroForMix. In all evaluations
Meredith Kercher was assumed to be a contributor, with another unknown individual and Q/X. The IMP
for Sollecito is 18.5 bans.

6.6.2 Results

Raffaele Sollecito

When Raffaele Sollecito is queried with detection threshold, t = 50, all three programs return a WoE≥11.5

bans (Table 6.7). At t=50 likeLTD and STRmix have similar WoEs (∆ = 0.3 bans) but EuroForMix has a

WoE > 1 ban larger (∆=1.5 and 1.2 bans for likeLTD and EuroForMix respectively). The three programs

have largely good correlation between locus WoEs, with two exceptions:

D5: likeLTD and EuroForMix have similar WoEs supporting Hd, STRmix supports neither hypothesis.

Sollecito is homozygous and masked by a heterozygous peak of Kercher.

FGA: likeLTD and EuroForMix support Hd, STRmix supports neither hypothesis, the likeLTD and Euro-

ForMix WoEs are now considerably different. Sollecito is heterozygous and both alleles are masked by

alleles of Kercher.

likeLTD reduces the WoE against Sollecito when t is changed from 20 RFU to 50 RFU by 1.0 bans,

while EuroForMix increases the WoE by 1.0 bans, giving a more similar WoE when t = 20 (∆=0.5 bans).
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At t = 20 there are no obvious discrepancies between likeLTD and EuroForMix.

The runtime for likeLTD was between 16 and 17 minutes, while EuroForMix and STRmix took less

than a minute to run.

Amanda Knox

When Amanda Knox is queried, all three programs support Hd at t = 50 (Table 6.7), with likeLTD and

EuroForMix having similar WoEs (≈-2 bans), while STRmix has a noticeably larger WoE (-0.7 bans). There

are some notable locus differences between the programs:

D8: EuroForMix and likeLTD support Hd, STRmix has the strongest support for Hp of any program and

any locus when querying Knox. Knox has one observed allele in a stutter position of Kercher allele,

and a dropout allele in the double-stutter position of the same Kercher allele. The dropped out allele

was observed when t=20 explaining the support for Hp by both likeLTD and EuroForMix when t=20.

D3: EuroForMix and likeLTD support Hd, STRmix supports Hp. Knox has one allele masked by Kercher,

and another allele that has dropped out. The dropout allele was observed when t=20, with which

likeLTD supports Hp, but EuroForMix continues to support Hd.

D13: EuroForMix and STRmix support Hd, likeLTD supports neither hypothesis. One allele of Knox is

masked by Kercher, while the other has dropped out. The dropped out allele was observed when t=20,

with which likeLTD supports Hp but EuroForMix continues to support Hd.

Both EuroForMix and likeLTD show an increase in WoE when t is changed from 50 RFU to 20

RFU; three peaks that match a heterozygous allele of Knox, and a peak that matches a homozygous allele of

Knox are introduced into the CSP when decreasing t, out of six total peaks introduced. The two programs

continue to have a similar overall WoE with t = 20, however, there are some notable discrepancies in locus

WoEs:

D2: likeLTD supports Hd, EuroForMix supports Hp. Knox has one allele masked by Kercher, and one

observed allele in the double-stutter position of the same Kercher allele. EuroForMix does not model

double-stutter, so must explain the Knox allele as allelic under Hd, supporting Hp, while likeLTD is

free to explain the peak as a double-stutter of the Kercher peak under Hd, and so supports Hd.

vWA: likeLTD support neither hypothesis, EuroForMix supports Hd. A homozygous allele of Knox is

unobserved at this locus.
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FGA: likeLTD supports neither hypothesis, EuroForMix supports Hp. A peak has been observed that

matches a homozygous allele of Knox. EuroForMix must explain this as allelic, therefore supporting

Hp, however, likeLTD is able to explain it as an over-stutter of a Kercher peak, supporting neither

hypothesis.

The runtime for likeLTD was between 25 and 30 minutes, while EuroForMix and STRmix once again

required less than a minute for computation.

6.6.3 Conclusions

The three models return similar results for all evaluations, with the largest difference between the models

being 1.6 bans for the Knox evaluation with t=50, indicating that all three models are likely to be valid,

with some differences due to divergent modelling choices.
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Chapter 7

Utilising the PH model to inform
casework practice

Some of the work in this chapter has been published in Steele et al. [2016], see Appendix B for the accepted

manuscript. All work was performed by me.

7.1 Motivation

The PH model can be used to inform strategies that might be useful in a casework setting. Here, the PH

model will be used to investigate whether or not splitting a sample into multiple replicates enhances the WoE

(an extension to Chapter 2), whether explaining away the peaks of a minor unknown contributor as dropin

is a valid strategy for reducing computational complexity, and whether assuming a clear major unknown

contributor as a known contributor is a valid strategy for reducing computational complexity.

7.2 Efficacy of multi-replicate CSPs for LTDNA samples

In Chapter 2 it was demonstrated that the addition of extra replicates in a CSP increases the WoE against Q

if Hp is true, up to the IMP. The methods used in that chapter mimic the protocol of some laboratories. DNA

extraction produces a fixed volume of extract, at varying concentrations depending on the case circumstances.

PCR has a maximum volume of input solution, which is lower than the volume produced by extraction, so

multiple PCR reactions can be performed from the same DNA extract. However, other laboratories perform

pre-extraction replicates, in which the evidence item is sampled multiple times, essentially splitting the DNA

sample before extraction, reducing the DNA mass in each replicate post extraction. To simulate this second

protocol, PCR was performed on the extract of two-contributor and three-contributor validation mixtures
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# Cont Condition
Unsplit DNA

# Samples # Reps
Split DNA Approx.

mass (pg) mass (pg) cell equiv.

2

Equal 62 (31:31)
4 2 31 (16:16) 5 (3:3)
4 3 21 (10:10) 4 (2:2)
4 4 16 (8:8) 3 (1:1)

Maj/min 266 (250:16)
4 2 133 (125:8) 22 (21:1)
4 3 89 (83:5) 15 (14:1)
4 4 67 (63:4) 11 (11:1)

3

Equal 93 (31:31:31)
2 2 47 (16:16:16) 8 (3:3:3)
2 3 31 (10:10:10) 5 (2:2:2)
2 4 23 (8:8:8) 4 (1:1:1)

Unequal 328 (250:62:16)
2 2 164 (125:31:8) 27 (21:5:1)
2 3 109 (83:21:5) 18 (14:4:1)
2 4 82 (63:16:4) 14 (11:3:1)

Table 7.1: Experimental design for investigating whether replicates provide extra information over an unsplit
DNA sample. DNA masses and cellular equivalents are rounded, and are given as a total contribution, with
individual contributions in brackets.

(see Table 6.1), but the extract was split into 2 ≤ n ≤ 4 replicates, which simulates a situation of splitting

a DNA sample with x pg input DNA into multiple samples with on average x/n pg DNA. The rest of the

laboratory protocol was kept consistent with that of the validation data set (see Section 6.2).

Using a definition of low template as DNA mass < 200 pg, all total contributions in each replicate

are low-template, and all individual contributions per replicate are low template (Table 7.1). In contrast,

the total unsplit DNA mass (both as a single sample, and summed over replicates) is low template only for

the equal-contributions CSPs, whereas the unequal-contributions mixtures are good template for the major

contributor, and low template for subsequent contributors.

The WoE for the replicate CSPs was evaluated using the PH model, and compared to the WoE

obtained for the unreplicated CSPs in Chapter 6. There may be little gain from running multiple replicates,

as the PH model should be able to utilise close to the total information available in a single replicate, and

because the total DNA contribution is the same between the replicated and unreplicated CSPs. Alternatively,

the variability in contributions between replicates may give extra information regarding their genotypes, or

replication may provide useful information to overcome peak height variability.

7.2.1 Two-contributor CSPs

Unsplit CSP vs. replicates CSP

The majority of two-contributor cases obtain roughly equal information with a single replicate of x pg DNA

(x-axis) or n replicates of x/n pg DNA (y-axis), regardless of the relative contributions of each contributor
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Figure 7.1: Information gain ratio (IGR) for 12 equal-contributions two-contributor CSPs (red) and 12
major/minor two-contributor CSPs (blue) using a single replicate (x-axis) or splitting the sample into n
replicates (y-axis).The plotted point numbers indicate how many replicates were run for that CSP. Crosses
indicate mean IGRs. Each of the two contributors were queried in turn, leading to the 48 total data points.

(red/blue) or DNA template. In contrast, the multi-replicate CSP for CSP 8 obtains ∼ 0.5 greater IGR

than the single replicate CSP. This is due to the stochastic nature of peak observation in a particular run;

three alleles of Q are observed in the multi-replicate CSP that are not observed in the single-replicate CSP,

while two alleles of Q are observed in the single-replicate CSP but not observed in the multi-replicate CSP

(Appendix Figure A.6). Of those alleles that are observed only in the multi-replicate CSP, two are rare

(px=0.03 and 0.05 respectively), so increase the WoE against Q substantially, while the last is relatively

common (px=0.16). Conversely, the two alleles that are only observed in the single-replicate CSP are

common (px=0.32 and 0.30 respectively).

The noise seen around the x=y line is likely due to the stochastic sampling of alleles at low template.

If mixture generation was performed for the same mixture multiple times, and each mixture was subsequently

amplified and analysed, the number of alleles observed in each analysis could reasonably be modelled as being

drawn from a truncated Poisson, with some mean proportional to the total DNA contribution in the input

mixture, and variance equal to the mean. The noise around the x=y line is analogous to the sampling variance

from this hypothetical Poisson distribution; points above the x=y line are those for which more alleles of Q

were “sampled” using multiple replicates, while points below the x=y line are those for which more alleles

of Q were “sampled” using a single replicate. The effect of this sampling on the WoE is further enhanced
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by the population allele probability for the sampled alleles; rare sampled alleles of Q greatly increase WoE,

while common sampled alleles of Q only increase the WoE slightly.

Sequential information gain

Here the WoE was evaluated for each replicated CSP with each replicate sequentially added into the CSP,

similar to the analysis in Chapter 2. It is expected that with addition of extra replicates, for a true Hp

the WoE against Q should increase, mirroring the results in Chapter 2, as individual replicates are very low

template here, so subsequent replicates provide information that may be missing in the initial replicate.
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Figure 7.2: Information gain ratio (IGR) for twelve equal contributions (left, red) and twelve major/minor
(right, blue) two contributor CSPs with sequential addition of replicates. Dashed or solid lines indicate the
queried contributor.

When equal-contributions CSPs are evaluated, the IGR increases with increasing number of repli-

cates, with no effect of the queried contributor (Figure 7.2, left). One exception is seen where the addition

of a fourth replicate decreases the IGR. The IGR never reaches 1.0, due to the difficulty of deconvoluting

mixtures when the mixture ratio is ≈0.5 (see Section 5.3). A number of CSPs support Hd with a single

replicate, but support Hp with additional replicates, which is the ground truth.

When major/minor CSPs are evaluated, the IGR increases with increasing number of replicates

(Figure 7.2, right). When querying the major contributor (solid lines), IGR ≈ 1.0 with a single replicate,

and IGR=1.0 with a small number of replicates. One exception has IGR≈0.4 at one replicate, and remains
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far from IGR=1.0 at two replicates. When querying the minor contributor (dashed lines), the IGR is initially

low, increasing towards IGR=1.0 with additional replicates, but never exceeds IGR≈0.4. One CSP supports

Hd for the minor Q with a single replicate (IGR<0), but supports Hp with two or more replicates.

7.2.2 Three contributors
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Figure 7.3: Information gain ratio (IGR) for six equal-contributions (red) and six unequal-contributions
(blue) three-contributor CSPs using a single replicate (x-axis) or splitting the sample into n replicates (y-
axis). The plotted point numbers indicate how many replicates were run for that CSP. Crosses indicate
mean IGRs. Each of the three contributors were queried in turn, giving 36 total evaluations.

Similar to the two-contributor replicate results, the three-contributor IGRs are spread around the

x=y line for both equal- and unequal-contributions mixtures (Figure 7.3), confirming that splitting an x pg

DNA sample into n x/n pg DNA replicates provides no extra information over running the sample as a single

replicate x pg CSP. The largest deviation from the x=y line is for a two-replicate CSP that corresponds to

the single-replicate unequal-contributions CSP that had 13 whole locus dropouts, and returned a WoE of

1.9, 0.4, and -0.5 bans for the 250, 62 and 16 pg contributors respectively for the single-replicate CSP, which

all increased to 10.0, 3.6, and 0.1 bans respectively for the multiple-replicates CSP.
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7.2.3 Implications for casework

The results presented here (Figures 7.1 and 7.3) show little to no effect of pre-extraction replication on

the WoE using a continuous model, with mean WoEs lying close to the x=y line. This suggests that pre-

extraction replication may not be worth the cost. Post-extraction replication increases the WoE towards the

IMP with additional replicates (Figure 7.2), so is desirable.

The difference between the IGRs for the three-contributor CSP that had 13 whole locus dropout

in the single replicate scenario appears to provide the strongest support for performing multiple replicates;

variation is inherent in LTDNA analysis, and includes situations of total failure. Replication minimises this

risk as a total failure of a single replicate CSP retains 0% of the potential information, whereas a total failure

of one replicate out of n retains some proportion of the potential information in the CSP.

There may be a DNA mass cutoff at which replication cannot be advised, but the DNA mass is

unknown before DNA extraction, so in practice the decision to split a sample into replicates cannot be an

informed one. The decision is a risk reward analysis, where if splitting a sample is expected to increase the

chance of a per-peak dropout probability by less than 1/n then the sample should be split.

Using a discrete model, LRmix, Benschop et al. [2015] found that splitting a sample (100:200-600

pg mixture) into four PCR replicates (4 × 25:50-150 pg mixture) considerably decreased the WoE for the

minor contributor, supporting Hd in 90% of evaluations where previously Hp was supported in 100% of

evaluations. The WoE for the major contributor was increased for the majority of evaluations. This suggests

that discrete models have usable information to gain through pre-extraction replication, as seen for the

major contributors. This may be a result of differential dropout rates for contributors across replicates,

enhancing deconvolution. However, discrete models lose much information about minor contributors when

replicating, as many minor peaks dropout. The PH model, in contrast, gains little to no information for

either contributor through replication; full information about the genotype of the major is available from

a single replicate, and a low detection threshold enabled by a PH model reduces the information loss for

a minor contributor when splitting into replicates. The mixtures used in Benschop et al. had larger DNA

contributions for the minor than the mixtures presented here, so may be expected to perform better both

with and without splitting. However, direct comparison is made difficult because each typing kit has a

different sensitivity.
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Condition Ground Truth H: Minor=dropin H: Minor=U
Two contributor 250pg + 16pg Q/X (250pg) + dropin Q/X (250pg) + U1

Three contributor 250pg + 62pg + 16pg
Q/X (250pg) + U1 + dropin Q/X (250pg) + U1 + U2
Q/X (62pg) + U1 + dropin Q/X (62pg) + U1 + U2

Contamination
250pg + U (contaminant) Q/X (250pg) + dropin Q/X (250pg) + U1
62pg + U (contaminant) Q/X (62pg) + dropin Q/X (62pg) + U1

Table 7.2: Ground truth and hypothesis pairs evaluated when assuming the minor contributor as dropin, or
as an unknown contributor.

7.3 Modelling minor contributors as dropin

To reduce the computational complexity of running the PH model, it may be a valid strategy to model minor

unknown contributors as dropin. If this strategy is employed, many of the smallest peaks in the CSP will be

assigned by the model as dropin peaks, while large peaks will be assigned to one of the assumed contributors.

This strategy is not available using a discrete model, as the program has no information available on which

peaks to treat as allelic and which to treat as dropins. To test this possibility, the two-contributor (see Section

6.2.4), three-contributor (see Section 6.2.6) and contamination (see Section 6.2.3) CSPs were evaluated with

hypothesis pairs given in Table 7.3.
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Figure 7.4: Information gain ratio (IGR) for 12 major/minor two contributor CSPs (blue), six unequal
contribution three contributor CSPs (red) and 18 contaminated “single contributor” CSPs (blue) assuming
the minor as dropin (x-axis) or an unknown contributor (y-axis). Symbols give the DNA contribution of the
queried individual.
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Assuming the minor contributor as dropin gives approximately equal IGRs with an unknown minor

or dropin minor for the majority of CSPs evaluated (Figure 7.4), with exceptions for the contamination

cases when the major contributor contributes approximately 62 pg DNA. For these contamination cases,

the minor contributor has an unknown amount of DNA, and may not be entirely distinguishable from the

major contributor. In this case some of the peaks of Q may be assigned as dropins under Hd if they have

a lower PH than some of the contaminant peaks; Hd then fits the data better than Hp is able to, reducing

the IGR (Figure 7.4). This has been confirmed by visual inspection, and can be seen in the estimated DNA

contributions of the hypothesised contributors when using the full hypotheses of Q/X + U , with mean

χ̂Q − χ̂U of 91 RFU for the 62 pg cases with dropin IGR<0.6 and 344 RFU for the 62 pg cases with dropin

IGR>0.6. Two cases estimate χ̂Q < χ̂U indicating that the contaminant may contribute more DNA to the

CSP than Q, so many alleles of Q will be designated as dropins under Hd.

These results suggest that any contributors to a CSP that are represented with substantially less

DNA than Q can be treated as dropins. If Q is a minor contributor it is not possible to assume other

contributors as dropins, because under Hd many alleles of Q will be assigned as dropin, erroneously reducing

the WoE against Q.

7.4 Assuming a major contributor as known

A further potential strategy to reduce computational complexity is to manually deconvolute the genotype of

a major unknown contributor, and to assume the deconvoluted genotype as a known contributor. Here the

major contributor will be assumed as a known contributor, even if they cannot be clearly distinguished.

When the two contributors can be clearly distinguished, assuming the major contributor as known

returns approximately the same IGR as assuming the major as an unknown contributor (Figure 7.5, points

along x=y line), so including a clearly-distinguishable major contributor as known is a valid strategy for

reducing computational complexity.

When the two contributors are not clearly distinguishable, assuming the “major” contributor as

known here simulates a situation where the “major” contributor is believed to be a contributor due to case

circumstances, rather than by deconvoluting the major genotype from the CSP. In this situation, assuming

a contributor as known increases the WoE against Q if both Q and K are true contributors to the CSP

(Figure 7.5, points below x=y line).

Two of the contamination cases give counter-intuitive results; a 62 pg contamination case lies close

to the x=y line, while a 250 pg contamination case is clustered with the remaining 62 pg cases. This
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Figure 7.5: Information gain ratio (IGR) for 12 major/minor two contributor CSPs (blue) and 18 contam-
inated “single contributor” CSPs (purple) assuming the major contributor as a known contributor (x-axis)
or as an unknown contributor (y-axis). Symbols give the DNA contribution of the major contributor. The
minor contributor was queried.

suggests that the two contributors can be clearly distinguished for the 62 pg case, but cannot for the 250 pg

case. This is supported by the DNA contribution estimates of each case; the 62 pg case gives χ̂p = 865, 98,

χ̂d = 772, 184, and the 250 pg case gives χ̂p = 654, 110, χ̂d = 597, 162. Thus the 250 pg case has closer

DNA contribution estimates than the 62 pg case. This is likely due to pipetting errors, where the 250 pg

contributor was sampled at lower than 250 pg, and the 62 pg contributor was sampled at greater than 62

pg.

These results highlight that assuming a clearly distinguishable contributor as known is a valid

strategy for reducing computational complexity that does not affect the WoE. However, assuming a non-

clearly distinguishable unknown contributor as known will unduly favour the prosecution, but including a

non-clearly distinguishable contributor as known due to case circumstances will enhance the WoE against a

true Q.
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Chapter 8

Conclusions

8.1 FST recommendations

Chapter 3 provides estimates of FST for worldwide subpopulations relative to continental populations, with

recommendations of an FST value for forensic use of between 2% and 3% for common populations, and

perhaps as high as 5% for isolated populations. Chapter 4 further clarifies that the choice of an appropriate

FST value can account for the fact that the appropriate database for an unknown contributor may be

unknown, and so may be misassigned, or for the fact that there may not be an appropriate database for a

given Q. This leads to the recommendation of 3% FST for all common populations, to allow for these effects.

8.2 Population genetics

In the process of generating estimates of FST (Chapter 3) some interesting inferences regarding the population

genetics of both global populations and forensic databases were obtained (Chapter 3). The observation of

“fringe” subpopulations, that fit almost equally well in multiple populations, reiterates that human allele

probabilities change smoothly with geographical distance [Ramachandran et al., 2005], and that designation

of subpopulations into larger populations is subjective and somewhat arbitrary. Continental-scale estimates

of FST recapitulate the “out of Africa” theory of the origin of humans due to increasing indirect estimates of

FST with increasing distance from Africa, as well as demonstrating, along with a lack of fringe subpopulations,

that East Asia is more genetically distinct from other Old World populations than is typical. Estimates of

subpopulation FST relative to forensic databases suggests that some subpopulations are highly represented

in some databases; Jamaicans in the FSS EA3 database, Pakistanis in the EA4 database and Chinese in the

EA5 database.
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8.3 Forensic databases

Chapter 4 demonstrated that, with an appropriate value of FST , assuming that all unknown contributors

are drawn from the population most relevant to Q is a valid heuristic rule for simplifying the computation of

forensic LRs, which does not unduly favour the prosecution, even if the population of Q has been misassigned

or Q does not fit their most appropriate database well.

8.4 Use of replicates

8.4.1 Pre-extraction

Chapter 7 demonstrated that pre-extraction splitting of a sample into multiple replicates does not increase

the WoE against a true Q, because the total amount of DNA in a single replicate with x pg of DNA, and

n replicates with x/n pg DNA are approximately equal, with some noise originating from the stochastic

nature of allele observation at low template. This work, together with the post-extraction investigation,

suggests that primary samples should be taken with a view to maximising the amount of DNA present in the

sample, therefore maximising the information available in the subsequent CSPs, and any replication should

be performed post-extraction to reduce the risk of large scale genotyping failure at low DNA levels.

8.4.2 Post-extraction

Chapters 2 and 7 further demonstrated that the sequential inclusion of extra post-extraction replicates in a

CSP increases the WoE towards the IMP when Q is a contributor, for both a discrete model (Chapter 2) and

a continuous model (Chapter 7). This work suggests that post-extraction replicates should be performed,

particularly to guard against the possibility of whole-profile failure, or extensive locus dropout, that are both

risks encountered at very low template. In addition, the discrete model is able to exceed the mixLR, the LR

from a high quality mixed sample, with just a few replicates, indicating that multiple low-template replicates

can provide more information than a single good-template sample through differential dropout rates.

8.4.3 As validation

Using multiple replicates to validate the behaviour of a forensic likelihood implementation was explicitly

demonstrated for the discrete model in Chapter 2, and implicitly demonstrated for the PH model in Chapter

7, where it was observed that with increasing numbers of replicates the WoE tends towards the IMP but does
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not exceed the IMP, as predicted by theory. Therefore both the PH and discrete models have been validated

through their behaviour with multiple replicates, suggesting that this behaviour is useful for validating any

implementation of this class of model for evaluation of forensic STR LRs.

8.5 PH model

A PH model was developed in Chapter 5, which was subsequently validated in Chapter 6, and utilised

in Chapter 7 to investigate some modelling assumptions that can be employed to decrease computational

complexity in some situations.

8.5.1 Validation

Validation of the model showed that it behaves as expected in relation to the discrete model for laboratory-

generated CSPs ranging from one to three contributors, that the WoE behaves as expected when the input

data is altered artificially and when the model assumptions are altered. Additionally the model returns

similar WoEs to other continuous models. The breadth and depth of tests presented throughout Chapter 6

constitute an extensive and thorough validation of the PH model for use in forensic casework.

8.5.2 Uses

Including a major unknown contributor as a known contributor, and modelling minor unknown non-Q peaks

as dropin are both strategies for decreasing computational complexity that are valid when a major and/or

minor contributor can be clearly distinguished from any other contributor in the CSP. Currently, modelling a

major unknown contributor as a known contributor is standard practice when they are clearly distinguishable.

Modelling minor peaks as dropin is not currently practiced, but is analogous to employing a high detection

threshold to remove minor peaks that are not of interest to the court.

8.6 Limitations

The first limitation in the thesis is the low sample sizes of some populations and subpopulations in Chapter

3. This is most notable for IC6 which had many subpopulations with sample size < 30. However, it was a

limitation for all populations, as ideally all national subpopulations would have a sufficient sample size to

avoid combining into regional subpopulations e.g. Germany into Western Europe.
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Dropout probabilities when simulating profiles in Chapter 2 did not vary with the length of an allele

in base pairs, which would simulate the effects of degradation. This may have contributed to the slightly

different behaviour observed for the laboratory and simulated CSPs. Instead, it would be desirable to run

multiple simulations, with varying degrees of degradation.

A slight limitation of the proposed PH model is the runtime, taking longer to run than other available

software. However, some of the modelled phenomena in the PH model are not modelled in other packages,

and are important for fully explaining common observations in CSPs.

8.7 Further work

8.7.1 Baseline

The PH model outlined in Chapter 5 employs a detection threshold, below which an allele is deemed to have

dropped out, as do all other available models except TrueAllele. To be able to utilise the full information in

a CSP that is below the current detection threshold it may be desirable to remove the detection threshold

entirely. Currently, this has not been implemented in the PH model, and would require extensive work on

determining which genotype allocations to consider so that silent alleles or total dropouts (RFU=0, rather

than RFU< t) are able to be handled by the model. As is the case for all forensics software, this would

require extensive validation tests, similar to those in Chapter 6, but designed specifically to challenge a

baseline model.

8.7.2 Single-nucleotide polymorphism (SNP) WoE

SNP panels for ancestry prediction [Yang et al., 2005, Phillips et al., 2007, Halder et al., 2008, Jia et al.,

2014], or trait prediction such as eye [Walsh et al., 2011, 2013], hair [Branicki et al., 2011] and skin [Myles

et al., 2007, Beleza et al., 2013] pigmentation, are beginning to be utilised to inform forensic investigation

while no suspect is known to the police. Currently these data are not then utilised to generate a WoE

against any subsequent suspect. A model to combine the WoE from both STRs and SNPs would utilise the

full genetic data for identification in such cases, without necessarily utilising the trait prediction based on

the SNP data. While some models have been created to generated a WoE from SNP panels, they are not

incorporated into models for STR WoEs, so this would be an avenue for further extensions to likeLTD.
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8.7.3 Sequencing WoE

In conjunction with generating SNP data, sequencing chips are now available that sequence both the SNP

panels and the forensic STR sets together. This provides the possibility of being able to distinguish between

microvariants of STRs, so [ATTC]5 could be distinguished from [ATTC]2ATGC[ATTC]2, where current STR

typing through capillary electrophoresis would be unable to distinguish such a difference. Sequencing STRs

is still in its infancy, with no database of population frequencies of different microvariants, and indeed no

agreement on a naming convention for such microvariants. However, as the sequencing of STRs matures,

a model for WoE of sequenced STRs would be necessary to present the evidence in court, and would be a

considerable extension to likeLTD.
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Figure A.1: CSPs for a number of notable single-contributor results; red bars indicate alleles of Q while black
bars indicate unattributable peaks. Blue, purple and red labels indicate peaks called as allelic, uncertain
and non-allelic respectively for the discrete model CSP.
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Figure A.2: CSPs for a number of notable two-contributor equal-contribution results; red bars indicate alleles
of the first contributor, turquoise bars indicate alleles of the second contributor and black bars indicate
unattributable peaks. Blue, purple and red labels indicate peaks called as allelic, uncertain and non-allelic
respectively for the discrete model CSP.
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Figure A.3: CSPs for a number of notable two-contributor major/minor results; red bars indicate alleles
of the minor contributor, turquoise bars indicate alleles of the major contributor and black bars indicate
unattributable peaks. Blue, purple and red labels indicate peaks called as allelic, uncertain and non-allelic
respectively for the discrete model CSP.
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black bars indicate alleles of the first, second and third contributors and unattributable peaks respectively.
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Figure A.5: CSPs for a number of notable three-contributor unequal-contribution results; red, green, blue and
black bars indicate alleles of the 250pg, 62pg and 16pg contributors and unattributable peaks respectively.
Blue, purple and red labels indicate peaks called as allelic, uncertain and non-allelic respectively for the
discrete model CSP.
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Figure A.6: Two-contributor equal-contributions CSP 8, with (a-b) multiple replicates and (c) single repli-
cate.
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Verifying likelihoods for low template DNA profiles using
multiple replicates

Christopher D. Steele a,*, Matthew Greenhalgh b, David J. Balding a
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1. Introduction

In forensic DNA profiling, a likelihood ratio (LR) is calculated to
measure the support provided by DNA evidence (E) for a
proposition Hp favouring the prosecution case, relative to its
support for Hd representing the defence case. The LR can be
written as

LR ¼ PrðEjH pÞ
PrðEjHdÞ

: (1)

Each of Hp and Hd specifies a number of unprofiled contributors and
a list of contributors whose DNA profiles are known (included in E).
Typically Hp includes a profiled, queried contributor that we
designate Q, who is replaced under Hd by an unprofiled individual
X. Q may be an alleged offender, or a victim, while X is an

alternative, usually unknown, possible source of the DNA. It
usually suffices to limit attention to Hp and Hd that differ only in
replacing Q with X, otherwise the LR is difficult to interpret as a
measure of the weight of evidence for Q to be a contributor of DNA.

In addition to reference profile(s), of Q and possibly other
known contributors, the DNA evidence consists of one or more
profiling runs performed on a DNA sample recovered from a crime
scene, or from an item thought to have been present when
the crime occurred. Each profiling run generates graphical results
in an electropherogram (epg), which we assume has been
interpreted by a forensic scientist who decides a list of alleles
observed at each locus, and also a list of potential alleles about
which there is substantial uncertainty, perhaps due to possible
stutter. Alleles not on either list are regarded as unobserved in
that run.

In low-template DNA (or LTDNA) profiling, each epg can be
affected by stochastic effects such as dropin, dropout and stutter
[1]. To help assess stochastic effects, it is common to perform
multiple profiling runs, possibly varying the laboratory
conditions but these are nevertheless referred to as replicates.
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A B S T R A C T

To date there is no generally accepted method to test the validity of algorithms used to compute

likelihood ratios (LR) evaluating forensic DNA profiles from low-template and/or degraded samples. An

upper bound on the LR is provided by the inverse of the match probability, which is the usual measure of

weight of evidence for standard DNA profiles not subject to the stochastic effects that are the hallmark of

low-template profiles. However, even for low-template profiles the LR in favour of a true prosecution

hypothesis should approach this bound as the number of profiling replicates increases, provided that the

queried contributor is the major contributor. Moreover, for sufficiently many replicates the standard LR

for mixtures is often surpassed by the low-template LR. It follows that multiple LTDNA replicates can

provide stronger evidence for a contributor to a mixture than a standard analysis of a good-quality

profile. Here, we examine the performance of the likeLTD software for up to eight replicate profiling

runs. We consider simulated and laboratory-generated replicates as well as resampling replicates from a

real crime case. We show that LRs generated by likeLTD usually do exceed the mixture LR given

sufficient replicates, are bounded above by the inverse match probability and do approach this bound

closely when this is expected. We also show good performance of likeLTD even when a large majority of

alleles are designated as uncertain, and suggest that there can be advantages to using different profiling

sensitivities for different replicates. Overall, our results support both the validity of the underlying

mathematical model and its correct implementation in the likeLTD software.
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Joint likelihoods for multiple replicates are obtained by assuming
that the replicates are independent conditional on the genotypes of
all contributors and parameters f such as the amounts and
degradation levels of DNA from each contributor [2]. We can write

PrðEjHÞ ¼
X

j

PrðG jÞ
Y

i

PrðRijG j; fÞ; (2)

where Ri is the set of allele designations in the ith replicate run of
the crime scene profile (CSP), G j denotes the jth set of contributor
genotypes, and the summation is over all possible sets of
contributor genotypes under H. PrðG jÞ is computed under a
standard population genetics model [1]. The unknown parameters
f can be replaced with estimates, or eliminated by maximisation
or integration with respect to a prior distribution.

Currently, there are only limited possibilities to check the
validity of an algorithm for evaluating an LTDNA LR (henceforth
ltLR). One approach is to evaluate the ltLR when Q is repeatedly
replaced by a random profile [3]. In that case Hp is false and we
expect the majority of computed ltLRs to be small. Here, we
propose to investigate a performance indicator for ltLR algorithms
when Hp is true. Under Hd, it may occur that GX ¼ GQ , where GX and
GQ denote the genotypes of X and Q. This occurs with probability
pQ, the match probability for Q. Since PrðEjHd; GX ¼ GQ Þ ¼ PrðEjH pÞ,
it follows that [4]

ltLR ¼ PrðEjH pÞ
PrðEjHd; GX ¼ GQ ÞpQ þ PrðEjHd; GX 6¼ GQ Þð1 � pQ Þ

� 1

pQ
: (3)

We will refer to 1/pQ as the inverse match probability (IMP).
Consider first that Q is the major contributor to an LTDNA

profile. Intuitively, if E implies that GX ¼ GQ then equality should
be achieved in Eq. (3). The key idea of this paper is that if Hp is
true then increasing numbers of LTDNA replicates should provide
increasing evidence that GX ¼ GQ , and so the ltLR should converge
to the IMP. This holds even for mixtures if Q is the major
contributor, since differential dropout rates should allow the
alleles of Q to be identified from multiple replicates. However, any
inadequacies in the underlying mathematical model or numerical
approximations may become more pronounced with increasing
numbers of replicates, preventing the ltLR from approaching the
IMP. Therefore we propose to consider convergence of the ltLR
towards the IMP as the number of replicates increases as an
indicator of the validity of an algorithm to compute the ltLR when
Q is the major contributor.

If Q is not the major contributor, even for many replicates there
may remain ambiguity about the alleles of Q so that there remains
a gap between the ltLR and IMP. However, the bound (3) still holds,
and there is a useful guide to the appropriate value of the ltLR
provided by the mixture LR for good-quality CSPs computed using
only presence/absence of alleles [5]. If under Hp the contributors
are Q and U, where U denotes an unknown, unprofiled individual,
and Hd corresponds to two unknown contributors X and U, an
example of a mixture LR is

mixLR ¼ PrðCSP ¼ ABC; GQ ¼ ABjQ ; UÞ
PrðCSP ¼ ABC; GQ ¼ ABjX; UÞ

¼ PrðGU is one of AC; BC; CCÞ
PrððGX; GUÞ is one ofðAA; BCÞ; ðAC; BBÞ; ðAB; CCÞ;

ðAB; ACÞ; ðAB; BCÞ; ðAC; BCÞÞ

; (4)

where within-pair ordering is ignored in the denominator. Under
the standard population genetics model [6,7] and setting FST = 0,

the mixLR for this example is

PrðCSP ¼ ABC; GQ ¼ ABjQ ; UÞ
PrðCSP ¼ ABC; GQ ¼ ABjX; UÞ ¼

2 pA þ 2 pB þ pC

6 pA pBð pA þ pB þ pCÞ
; (5)

where the p are population allele probabilities. As expected, mixLR
< IMP = 1/2pApB. See Ref. [8] for further details and examples. Note
that the mixLR does not use peak height information.

Multiple LTDNA replicates should allow identification of all
alleles present in any contributor, and hence the ltLR should reach
the mixLR. In fact, ltLR will typically exceed mixLR because the
alleles of different contributors may be distinguished over the
multiple replicates through differential dropout rates. Indeed, Ref.
[9] propose subsampling to generate different mixture ratios in
low-template replicates as a strategy to assist mixture deconvolu-
tion. We cast light on this possibility below by considering a real
CSP that has been profiled using multiple replicates at two
different levels of sensitivity. More generally, we examine the
behaviour of ltLR in relation to mixLR and IMP, and the utility of
each of these for verifying the validity of ltLR computations.

likeLTD is an open-source R package that computes like-
lihoods for low-template DNA profiles [10]. likeLTD allows for the
designation of epg peaks as uncertain in addition to the usual
allelic/non-allelic classification, but does not directly use epg peak
heights. Uncertain alleles are treated as if they were masked in
calculation of the likelihood: the presence/absence of the allele is
regarded as unknown. The effect of an uncertain call on calculation
of the likelihood is illustrated in Table 1. When B is called as
uncertain rather than absent and the hypothesised contributor has
a B allele, a dropout term D is removed from the likelihood because
the dropout status of B is unknown. We use likeLTD here both to
confirm its good performance in computing ltLRs, and to illustrate
the value of the IMP as a strict upper bound and the mixLR as an
approximate lower bound. We apply likeLTD to lab-based
profiling replicates, simulated replicates, and replicates obtained
by re-sampling the five actual replicates of a real CSP.

Throughout this paper, ltLR, mixLR and IMP will be reported in
units of bans, which is a base 10 logarithmic scale introduced as a
measure of weight of evidence by Alan Turing during his wartime
code breaking work [11]. Thus 6 bans corresponds to an LR of
1 million on the natural scale.

2. Materials and methods

2.1. Laboratory replicates

Cheek swab samples were obtained from five volunteers, and
DNA was extracted using a PrepFiler Express BTATM Forensic DNA
Extraction Kit and the Life Technologies Automate ExpressTM

Instrument as per the manufacturer’s recommendations. The
samples were then quantified using the Life Technologies
Quantifiler1 Human DNA Quantification kit as per the manufac-
turer’s recommendations.

Table 1
Likelihood calculations for a CSP when the queried contributor Q has genotype AB

and [] indicates an allele designated as uncertain. Lp is the likelihood under the

prosecution hypothesis, and D is the dropout probability. Under Hd are possible

genotypes for the alternative contributor X, where Z is any other allele. Ld is the

corresponding contribution to the likelihood under the defence hypothesis, where

px is the probability of allele x, and D2 is the homozygote dropout probability.

CSP Lp Hd Ld

A D(1 � D) AA p2
Að1 � D2Þ

AZ 2pA(1 � pA)D(1 � D)

A[B] 1 � D AA p2
Að1 � D2Þ

AB 2pApB(1 � D)

AZ 2pA(1 � pA� pB)D(1 � D)
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Each sample was serially diluted on a log 10 scale, and then
amplified using the AmpF‘STR1 SGM Plus1 PCR kit as per the
manufacturer’s recommendations on a Veriti1 96-Well Fast
Thermal Cycler.

An ABI 3130 Sequencer was used to analyse 1 mL of the PCR
products, with 10 second injections at 3 kV; these settings were

used for all subsequent analyses. The results returned from the
3130 sequencer were analysed using GeneMapper1 ID v3.2 to
determine which samples were suitable for further use.

For the one-contributor investigation eight replicates of each of
three conditions were created (Table 2). The conditions were
created to investigate increasing dropout rate. For the 500 pg and

Table 2
Sample preparation and genotyping protocol for all conditions examined in the lab-based experiments (described in Table 3). Each condition was replicated eight times. The

initial DNA concentration (column 3), dilution (column 4) and volume (column 5) generate approximately the DNA mass indicated in column 6. Columns 7 and 8 show the

number of PCR cycles and the volume of PCR product added to each well for the genotyping. Columns 9 and 10 show the ratio of Hi-DiTM formamide to GeneSanTM 400HD

ROXTM and the volume of the mixture added to each well. Apmr stands for as per manufacturers recommendations.

Condition Contributor Init. conc.

(ng mL�1)

Dilution

(%)

Volume

(mL)

Mass

(pg)

Cycles Product

(mL)

Formamide:

ROX

F/ROX

mixture (mL)

(i) B 31.0 1 1.6 500 28 apmr apmr apmr

(ii) B 31.0 0.1 2.0 60

(iii) B 31.0 0.01 5.0 15

(iv)
A

23.0 1 17.6 500 28 apmr apmr apmr

C 18.1 0.1 16 30

(v)
A

23.0 0.1 22.4 60 28 apmr apmr apmr

C 18.1 1 22.0 500

(vi)

A 23.0 0.1 2.7 60 28 apmr apmr apmr

B 31.0 0.1 2.0 60

C 18.1 0.1 3.5 60

(vii)
A

23.0 0.1 2.7 60 28 1 600:1 9

B 31.0 0.1 2.0 60

C 18.1 0.1 3.5 60

(viii)
A

23.0 0.1 2.7 60 28 9 366:1 11

B 31.0 0.1 2.0 60

C 18.1 0.1 3.5 60

(ix)

A
23.0 0.1 2.7 60 30 apmr apmr apmr

B 31.0 0.1 2.0 60

C 18.1 0.1 3.5 60

Table 3
Experimental conditions and hypotheses compared. pg denotes picograms and measures DNA mass; Pr(D) denotes the probability of dropout for a heterozygote allele, while

Pr(C) denotes the probability of dropin. Pr(unc) indicates the probability of designating a CSP allele as uncertain. y indicates the number of uncertain dropins per locus per

replicate; see text for further details of ‘‘Condition’’. Q denotes the queried contributor, who is one of A, B or C as indicated in parentheses. X is an unknown alternative to Q

under Hd, while U1 and U2 are unknown contributors under both Hp and Hd.

Study # Contributors Condition Hp Hd

Lab-based 1 500 pg (i) Q (B) X

60 pg (ii) Q (B) X

15 pg (iii) Q (B) þ dropin X þ dropin

2

A=500 pg; C=30 pg (iv)

Q (A) þ dropin X þ dropin

Q (A) þ U1 X þ U1

Q (C) þ U1 X þ U1

A=60 pg; C=500 pg (v)

Q (C) þ dropin X þ dropin

Q (C) þ U1 X þ U1

Q (A) þ U1 X þ U1

3 28 cycles (vi) Q (A) þ U1 þ U2 X þ U1 þ U2

Phase 1 (vii) Q (A) þ U1 þ U2 X þ U1 þ U2

Phase 2 (viii) Q (A) þ U1 þ U2 X þ U1 þ U2

30 cycles (ix) Q (A) þ U1 þ U2 X þ U1 þ U2

Simulation 1 PrB(D) = 0; Pr(C) = 0 Q (B) X

PrB(D) = 0.4; Pr(C) = 0.05 Q (B) þ dropin X þ dropin

PrB(D) = 0.8; Pr(C) = 0.05 Q (B) þ dropin X þ dropin

Pr(unc) = 0.8; y� Pois(l = 1) Q (B) X

Pr(unc) = 0.4; y� Pois(l = 1) Q (B) X

2

PrA,C(D) = {0.2, 0.8}; Pr(C) = 0

Q (A) þ dropin X þ dropin

Q (A) þ U1 X þ U1

Q (C) þ U1 X þ U1

PrA,C(D) = {0.2, 0.6}; Pr(C) = 0

Q (A) þ dropin X þ dropin

Q (A) þ U1 X þ U1

Q (C) þ U1 X þ U1

3 PrA,B,C(D) = {0.8,0.5,0.2}; Pr(C) = 0 Q (A) þ U1 þ U2 X þ U1 þ U2

PrA,B,C(D) = {0.5,0.5,0.5}; Pr(C) = 0 Q (A) þ U1 þ U2 X þ U1 þ U2

PrA,B,C(D) = {0.2,0.5,0.8}; Pr(C) = 0 Q (A) þ U1 þ U2 X þ U1 þ U2

Real-world �3 Standard and sensitive Q þ U1 þ U2 X þ U1 þ U2

Standard only Q þ U1 þ U2 X þ U1 þ U2

Sensitive only Q þ U1 þ U2 X þ U1 þ U2
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60 pg conditions, one-contributor hypotheses were compared, B
under Hp and X under Hd, while for the 15 pg condition dropin was
also modelled under both hypotheses (Table 3).

For the two-contributor investigation eight replicates of each of
two conditions were created (Table 2). The major and minor
contributors were reversed between conditions, with an increased
DNA contribution from the minor. These samples were amplified
and analysed as described previously. Two-contributor hypotheses
were compared, with each of A and C in turn playing the role of Q,
while the other contributor was treated as unknown. Additionally
one-contributor-plus-dropin hypotheses were compared, with
only the major contributor playing the role of Q (Table 3).

For the three-contributor investigation eight replicates of each
of four conditions were created (Table 2). The conditions were
created to investigate different profiling protocols. The Phase 1 and
Phase 2 conditions are post-PCR purification protocols designed to
enhance the sensitivity of detection of the standard protocol [12],
and both involve concentrating the post-PCR product using an
Amicon1 PCR microcon unit according to the manufacturer’s
recommendations. Phase 1 enhancement increases the amount of
formamide in the mixture compared to the manufacturer’s
recommendations, while Phase 2 enhancement increases the
amount of DNA, formamide and ROX compared to Phase 1. For all
four conditions (30 cycles, 28 cycles, Phase 1, and Phase 2), three-
contributor hypotheses were compared, with A playing the role of
Q and the other contributors treated as unknown (Table 3). Dropin
was not modelled under either hypothesis, although dropin was
included in the simulations. This reflects a realistic challenge for

few replicates with multiple contributors, whereby any dropin
alleles may be wrongly attributed to one of the contributors.
However the incorrect model will lead to deterioration of
inferences for larger numbers of replicates.

2.2. Simulated replicates

All of the conditions that we now describe were simulated in
eight replicates, with the whole simulation being performed five
times. Initially a number of single-contributor CSPs were
simulated using the profile of individual B. The first condition
investigated was a ‘‘perfect match’’, in which all eight replicates
generated exactly the profile of B. Next, we introduced mild
dropout (Pr(D) = 0.4) and severe dropout (Pr(D) = 0.8) of the alleles
of B, in each case with dropins included at rate Pr(C) = 0.05 (at most
one dropin per locus per replicate). The homozygous dropout
probability was set equal to Pr(D)2/2, as suggested by [13]. We then
examined the effect of uncertain allele designations by randomly
designating some alleles of B as uncertain, first with Pr(unc) = 0.4
and then Pr(unc) = 0.8. In both conditions, at each locus and in each
replicate a Poisson mean one number of alleles not in the profile of
B was also designated as uncertain, with types randomly selected
according to frequencies in the UK Caucasian database. For all
these simulated profiles, one-contributor hypotheses were com-
pared, B under Hp and X under Hd.

Next two-contributor CSPs were simulated, based on the profiles
of A and C. Two conditions were simulated, both used PrA(D) = 0.2,
while PrC(D) was initially 0.8 and then 0.6. Dropin was not

Table 4
Five replicates of a crime scene profile, three from a sensitive LTDNA profiling technique and two from standard DNA profiling. Alleles shown in [] were called as uncertain.

Locus Sensitive profiling Standard profiling

Run 1 Run 2 Run 3 Run 4 Run 5

D3 16, [15] 16, [15] 16, 18, [15] 16 16

vWA 15, 16, [17] 15, [14] 15, 18, [14] 15 15

D16 9 9 9, 11, [10] 9 9

D2 17, 19, 24 16, 17, 24,[23] 17, [16] 24 24

D8 8, 13, 15, 16 8, 12, 13, 16, [15] 8, 13, 14, 16, [15] [8]

D21 30, 32, 33.2 32, 32.2, 33.2 32, 32.2, 33.2, 34, [31] [32], [32.2] [33.2]

D18 12, 17 12, 17, 19 12, 17, [11], [16] [17] 17

D19 14, 21, [13] 11, 14, [13] 14, [13] 14 14

TH01 6, 9.3 6, 9.3 6, 8, 9.3 [6], [9.3] [6]

FGA 21 21, [20] 21, 20 21

1 2 3 4 5 6 7 8
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Inverse Match Probability

1 2 3 4 5 6 7 8
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Fig. 1. The ltLR shown on a logarithmic scale (in bans) from one-contributor CSPs evaluated using from one up to eight replicates. Left: lab-based replicates, with DNA

template (in pg) as shown in the legend box. Middle: simulated replicates with dropout (probability Pr(D)) and dropin (probability Pr(C)); the plotted points represent the

median from five repetitions of the simulation, and the vertical bars show the range. Right: simulated replicates with uncertain allele calls (probability Pr(unc) for a true allele

to be uncertain, and a Poisson (rate l) number of non-alleles labelled as uncertain at each locus.
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simulated. For shared alleles the dropout probability was the
product of the dropout probabilities for each contributor having
that allele. Two-contributor hypotheses were compared, with each
of A and C in turn taking the role of Q, while the other was treated
as unknown in the analysis. Additionally one-contributor-plus-
dropin hypotheses were compared, only for A playing the role of Q
(Table 3).

Three-contributor CSPs were then simulated under three
conditions, with dropout probabilities for Donors A, B and C as
shown in Table 3. Dropin was included as for the one-contributor
simulations. Three-contributor hypotheses were compared, with A
playing the role of Q and the other two contributors being treated
as unknown.

2.3. Crime case replicates

We used a CSP from an actual crime investigation, consisting of
five replicates: two using standard SGMþ profiling and three
generated using an LCN protocol with 34 PCR cycles (Table 4). This
example was submitted to us for likeLTD analysis, and as is
typical only limited information about the profiling protocol was
provided by the profiling lab. These details are not required by
likeLTD because it estimates the unknown parameters from the
CSP allele designations. We re-sampled the five actual replicates to
generate simulated profiles with up to eight replicates, consisting
of standard replicates only, sensitive replicates only, or both. Six
distinct alleles were observed at locus D8, but no more than three
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Fig. 2. The low-template likelihood ratio (ltLR) from two-contributor CSPs profiled at up to eight replicates. Left: lab-based replicates, with the DNA template from the minor

contributor greater in the lower panel (see legend boxes). Right: simulation-based replicates, with the minor contributor having reduced dropout in the lower panel. The

simulated CSPs were generated from the profiles of Donors A and C, and the line colours on the graph indicate whether the queried individual (Q) is A (blue) or C (red). Solid

lines indicate a two-contributor analysis, with the non-Q individual regarded as unknown (U1). Dashed lines indicate a one-contributor analysis that also allows for dropin

(only for Q the major contributor). The inverse match probability is shown with dot-dash lines, coloured according to Q. The mixLR is shown with dotted lines, coloured

according to Q. In the legend boxes, H indicates the hypotheses with X an unknown alternative to Q, and Pr(D) indicates the probability of dropout.
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replicated alleles were observed at any locus. Three-contributor
hypotheses were compared, with all contributors unknown under
Hd, and no dropin (Table 3).

3. Results

3.1. One contributor

3.1.1. Lab-based

For the good-template experiments (500 pg), Fig. 1 (left) shows
that the ltLR equals the IMP for all numbers of replicates (one
through eight). This is the expected result, and the exercise shows
that in this simple setting there is no deterioration in the quality of
the computed LR for large numbers of replicates. Low DNA
template (60 pg) generates an ltLR about 1.6 bans below the IMP
for one replicate, but the gap is very small for two replicates and is
negligible for larger numbers of replicates. For very low DNA
template (15 pg) the ltLR is just under 6 bans for a single replicate,
about 6 bans below the IMP. Replicate profiling substantially
narrows the gap, but does not completely close it, with a difference
of about 3 decibans remaining at eight replicates.

3.1.2. Simulation

The corresponding simulation studies show broadly similar
trends to the lab-based data. For both the perfect match (Pr(D) = 0)
and mild dropout (Pr(D) = 0.4) conditions, the median ltLR rapidly
reaches the IMP but does not exceed it, while under severe dropout
(Pr(D) = 0.8) the median ltLR rises towards the IMP but does not
reach it (Fig. 1, middle). For the low and high rates of uncertain
calls, the IMP is approximately reached at a five and eight
replicates, respectively (Fig. 1, right).

3.2. Two contributors

3.2.1. Lab-based

When the minor contributor provides only 30 pg of DNA (Fig. 2,
top left panel), then if Q is the major contributor the ltLR is very
close to the IMP for all numbers of replicates, whereas if Q is the
minor contributor then there remains a substantial gap between
ltLR and IMP even at eight replicates. However, even with this very
low template, the ltLR exceeds the mixLR beyond five replicates.
When the major and minor contributors are reversed, and the
amount of DNA from the minor is doubled (Fig. 2, bottom left),
then if Q is the minor contributor the ltLR substantially exceeds
mixLR from six replicates and rises to within two bans of the IMP at
eight replicates. Under both conditions, the two-contributor

analysis gives a very similar result to the one-contributor-with-
dropin analysis.

3.2.2. Simulation

When the minor contributor is subject to high dropout (Fig. 2,
top right), then if Q is the major contributor the ltLR exceeds the
mixLR after one replicate, and rises rapidly to within about 2 bans
of the IMP, but the gap narrows only slowly thereafter. The one-
contributor-plus-dropin analysis gives an ltLR that is broadly
similar to the two contributor analysis, but with a wider range
indicating greater variability. If Q is the minor contributor, the
median ltLR increases rapidly from a low base, and appears to
stabilise after about five replicates, about four bans below the IMP
but exceeding the mixLR. The range increases after three replicates,
and remains high up to eight replicates.

With reduced dropout for the minor contributor (Fig. 2, bottom
right), inferring the presence of a major contributor Q is harder
because of additional masking by the minor contributor. The
median ltLR in both the two contributor and one-contributor-plus-
dropin analyses eventually reaches within 2 bans of the IMP, with
the latter showing a greater range. Conversely, the lower dropout
rate leads to improved inference for a minor contributor Q, with
the median ltLR rising to about three bans below the IMP at eight
replicates, and exceeding the mixLR from four replicates.
Interestingly, after six replicates the range of the minor contributor
ltLR overlaps the range for the major contributor.

3.3. Three contributors

3.3.1. Lab-based

The 30 PCR cycles condition gives the highest ltLR at one
replicate but little improvement with additional replicates (Fig. 3,
left). The other amplification methods do show an increasing ltLR
trend with additional replicates, but in no case did the ltLR reach
within four bans of the IMP. As expected, the ltLR for both phase 1
and phase 2 enhancement exceeds that for standard 28 PCR cycles
at all numbers of replicates, and phase 2 enhancement ltLR
typically gives a small improvement over phase 1 enhancement.
For 30 PCR cycles, the ltLR exceeds the mixLR for a single replicate
but dips slightly below it at six replicates. For the other conditions,
the mixLR is always exceeded from four replicates.

3.3.2. Simulation

All three curves in Fig. 3 (middle) show an increasing trend
with number of replicates, with the median ltLR being in the
expected order throughout (decreasing ltLR with increasing
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Fig. 3. The low-template likelihood ratio (ltLR) for three-contributor crime stains profiled with one to eight replicates. Left: laboratory replicates using four lab techniques

indicated in the legend box and described further in Section 2. Middle: simulated replicates with dropout rates for the three contributors as shown in the legend box against

Pr(D), the first value being for the queried contributor. Pr(C) is the dropin probability. Right: re-sampled actual crime-stain replicates; the original data are two standard

profiling replicates, and three replicates using enhanced sensitivity. The ltLR returned from a perfect replicate of the contributors (consisting of every allele from each

contributor) is shown with dotted lines; this is not possible for the real-world case, as the true contributors are unknown.
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dropout for Q). The median ltLR exceeds the mixLR after one
replicate (low dropout), after two replicates (medium dropout) and
after four replicates (high dropout). The range is often wide,
reflecting a strong dependence of the ltLR on the details of the
simulation (in particular the number of alleles shared across
contributors).

3.3.3. Real-world case

The ltLR returned when only standard or only sensitive
replicates are used shows a similar trend, but nearly five bans
lower for the standard replicates (Fig. 3, right). For three or more
replicates, using mixed types of replicates is superior even to only
using sensitive replicates, coming to within two bans of the IMP.
This partly reflects the limited pool of replicates used in the actual
crime case, but suggests that using different sensitivities in the
profiling replicates may convey an advantage due to different
contributors being better distinguished.

4. Discussion

We have shown that ltLR computed by likeLTD is bounded
above by the IMP in every condition considered, as predicted by
theory (Eq. (3)). That the bound is often tight when Q is the major
contributor (Figs. 1 and 2 (top)) supports the validity of the
underlying mathematical model, and its correct implementation in
the likeLTD software. Our results should help counter any
misconception that combining multiple noisy profiling replicates
only compounds the noise: in fact, multiple noisy replicates can
fully recover the genotype of a contributor [14].

A novel feature of likeLTD, is that it can accommodate
uncertain allele designations, which diminishes the problem of
an all-or-nothing allele call, therefore mitigating the problem
highlighted by [15] of choosing a detection threshold. We have
shown (Fig. 1 (right)) that introducing many uncertain allele calls
leads to ltLRs that satisfy the bound, which is reasonably tight
with as few as three replicates even when 80% of true alleles are
designated as uncertain and there are also multiple uncertain
non-alleles.

We have further shown that mixLR, the LR computed from
knowing every allele that is represented in the profile of at least
one contributor to the CSP, is often surpassed after only a handful
of replicates. Then, multiple LTDNA replicates provide stronger
evidence than a single good quality profile correctly representing
the alleles of all contributors, which occurs because the alleles of
different contributors can to some extent be distinguished through
differential dropout rates in multiple replicates. These results lend
support in principle to the proposal of [9].

Fig. 2 shows that, for two-person mixtures, the analysis
assuming one-contributor-plus-dropin gave a very good approxi-
mation for the lab-based replicates (left panels), and a reasonably
good approximation for the simulation replicates, but with more
variable ltLR values, as indicated by the wider range.

4.1. Choice of profiling technique

We generated three-contributor CSPs in order to compare
different LTDNA profiling techniques. We chose the most
challenging condition in which all three contribute the same
DNA template, making it impossible to deconvolve the mixture
into the genotypes of individual contributors. We found that PCR
performed with 28 cycles (regardless of enhancement) is prefera-
ble to 30 cycle PCR beyond one replicate (Fig. 3). More PCR cycles
introduces more stochasticity in the results, as stated in the
AmpF‘STR1 SGM Plus1 PCR Amplification Kit user guide. We
found that enhancement of the post-PCR sample is advantageous,
with Phase 2 enhancement providing a small further improvement

over Phase 1 (Fig. 3). These results support those of Forster et al.
[16], who demonstrated that increasing PCR cycles increases the
size of stutter peaks and the incidence of dropin; we observed no
improvement in the WoE for 30 PCR cycles, possibly due to these
stochastic effects.

The results from the real crime case (Fig. 3, right) suggest that if
possible, a mixture of LTDNA replicates with differing sensitivities
should be employed, as this allows better discrimination between
the alleles of different contributors and hence a higher ltLR than
the same number of replicates all using the same sensitivity.

4.2. Use of replicates

Splitting the sample reduces the quality of results expected in
each replicate compared with that which would be obtained from a
single profiling run using all available DNA. Grisedale and van Daal
[17] favour use of a single run, but their comparison was with a
consensus sequence obtained from multiple replicates, rather than
the more efficient statistical analysis available through analysing
individual replicates. Our results show increasing information
obtained from additional replicates, which may tilt the argument
towards use of multiple replicates but we have not done a
comparison directly addressing this question. To fully test the
performance of likeLTD in relation to mixLR and IMP we have
used up to eight replicates. Taberlet et al. [18] suggest seven
replicates to generate a quality profile when the amount of DNA is
low, but this many replicates is rarely available for low-template
crime samples [15].
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Summary

We estimate the population genetics parameter FST (also referred to as the fixation index) from short tandem repeat
(STR) allele frequencies, comparing many worldwide human subpopulations at approximately the national level with
continental-scale populations. FST is commonly used to measure population differentiation, and is important in forensic
DNA analysis to account for remote shared ancestry between a suspect and an alternative source of the DNA. We
estimate FST comparing subpopulations with a hypothetical ancestral population, which is the approach most widely
used in population genetics, and also compare a subpopulation with a sampled reference population, which is more
appropriate for forensic applications. Both estimation methods are likelihood-based, in which FST is related to the
variance of the multinomial-Dirichlet distribution for allele counts. Overall, we find low FST values, with posterior 97.5
percentiles < 3% when comparing a subpopulation with the most appropriate population, and even for inter-population
comparisons we find FST < 5%. These are much smaller than single nucleotide polymorphism-based inter-continental
FST estimates, and are also about half the magnitude of STR-based estimates from population genetics surveys that focus
on distinct ethnic groups rather than a general population. Our findings support the use of FST up to 3% in forensic
calculations, which corresponds to some current practice.

Keywords: Microsatellite, short tandem repeat, FST , fixation index, forensic

Introduction
We analyse an extensive new data set of the short tandem
repeat (STR) profiles of individuals with worldwide origins,
to estimate FST for national-scale subpopulations relative to
continental-scale populations. We use two approaches to esti-
mating FST , which differ according to the choice of reference
population: a direct method that is appropriate for foren-
sic applications, and an indirect method that reflects current
population genetics practice.

In a forensic setting, FST is used to account for distant
relatedness (coancestry) between the queried contributor (Q)
and the unknown individual X that replaces Q in the defence
hypothesis (Weir, 2007). Larger values of FST imply greater
coancestry and so a greater probability that the profiles of
X and Q are similar. This results in a lower likelihood ratio

∗Corresponding author: Christopher D. Steele, UCL Genetics In-
stitute, Darwin Building Gower Street, London, WC1E 6BT, UK.
Tel: +44 (0) 20 7679 4392; E-mail: c.steele.11@ucl.ac.uk

(LR), meaning that ignoring coancestry between X and Q is
unfavourable to the defendant. The difference is unimportant
for full-profile matches because even after FST adjustment the
resulting LR is extremely large, and may be rounded down
for example to 1 billion for reporting in court. However,
FST adjustments are widely used, and can have a substantial
impact, in analyses of mixed and low-template DNA profiles.
The use of an FST adjustment can be regarded as allowing for
additional uncertainty arising from the fact that the available
database does not fit the circumstances of the case perfectly,
which logically reduces confidence in the result, reflected in
the reduced LR.

The appropriate value of FST in forensic work is relative
to the reference database used, and may therefore differ sub-
stantially from FST estimates arising in population genetics
research. Even if Q and X have a very similar ethnic back-
ground, a low FST value may suffice if the allele frequency
database is directly appropriate for both Q and X, whereas
the more distant they are from the database population, the
larger the FST value that is required (Steele & Balding, 2014).
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Worldwide FST Estimates from STR Loci

It is usually regarded as reasonable to give the defence some
benefit of doubt and to apply a generous FST value to all
possible X drawn from the same population as Q. If, on the
other hand, Q is Caucasian and we wish to consider an X
who is Afro-Caribbean, then the Afro-Caribbean database is
appropriate and since little coancestry is expected between
Q and X relative to this database, only a low value of FST

would be required. There is always some uncertainty about
the appropriate FST values: there is the usual variation in any
statistical estimate but we have additional uncertainty here
because FST is rarely estimated at the scale appropriate for a
particular forensic analysis, and also different alternative con-
tributors have different genetic backgrounds.

The origins of our study subjects are recorded at a na-
tional level, without reference to subnational ethnic identi-
ties. For example, in the analyses below Nigeria is treated as
a subpopulation of a broader Afro-Caribbean population, but
this ignores the substantial genetic variation among different
groups within Nigeria. In forensic applications, it is appro-
priate to consider a distribution of FST values over alternative
possibilities for X. Because an LR involves in effect a product
over loci with an FST value applied at each locus, a single
FST value for use in computing the LR should come from
the upper tail of the FST distribution. Below, we will re-
port posterior median estimates of FST , but when discussing
forensic applications we will use the posterior 97.5 per-
centile, thus tending to over-estimate which is favourable to
defendants.

We report FST values that are much lower than have been
obtained from single nucleotide polymorphisms (SNPs). This
in part reflects the within-nation population mixing described
above, but low FST estimates also suggest a homogenising
effect of STR mutation, which has previously been reported
(Xu et al., 2000; Lu et al., 2012). It may also reflect that
STRs employed in forensics were chosen in part on the basis
of limited variation across populations, although many of the
loci were chosen when little population data were available.

An extensive survey of worldwide human STR loci
(Pemberton et al., 2013) focussed on well-defined ethnic
groups, often with small population sizes, rather than the
large and often ethnically mixed populations that are ex-
pected to be well represented in our database. Another recent
study (Silva et al., 2012) has used worldwide forensic STR
databases. We go beyond these papers in giving FST estimates
at both within-continent and between-continent scales, and
in using both observed and inferred reference populations.
Our estimates are likelihood based, thus correctly account
for variable sample size and provide posterior quantiles. They
are directly relevant for forensic casework, and are also of
broader interest in understanding human genetic variation
in general populations at national, regional and continental
scales.

Table 1 Number of alleles typed per locus and popula-
tion. IC1-6 correspond to populations; Caucasian (IC1), Black
African/Caribbean (IC3), South Asian (IC4), East/South-East Asian
(IC5), and Middle Eastern/North African (IC6).

Observations IC1 IC2 IC3 IC4 IC5 IC6 Total

D3S1358 7013 162 5200 704 625 226 13930
TH01 6953 158 5177 694 624 226 13832
D21S11 7006 162 5198 704 624 225 13919
D18S51 6944 157 5180 704 626 226 13837
D16S539 6951 162 5183 694 626 226 13842
VWA 7013 162 5194 704 626 226 13925
D8S1179 7007 162 5200 704 626 226 13925
FGA 6988 162 5196 700 626 226 13898
D19S433 6836 158 5122 687 621 226 13650
D2S1338 6575 152 4995 667 620 220 13229
D22S1045 1822 56 3478 523 506 162 6547
D1S1656 1835 56 3509 528 511 162 6601
D10S1248 1823 56 3497 516 506 118 6516
D2S441 1808 56 3458 521 501 160 6504
D12S391 1869 56 3531 551 507 162 6676
SE33 376 4 1039 308 396 140 2263

Materials and Methods

Database

Our data set includes the STR profiles of 7 121 individu-
als living in the UK or Eire, or applying to migrate to the
UK on the basis of relatedness to a UK resident. They are
all genotyped by the same laboratory at up to 16 STR loci.
The individuals are self identified into one of six populations:
White (IC1 and IC2, with IC2 including darker-skinned indi-
viduals of European origin), Black African/Caribbean (IC3),
South Asian (IC4), East/South-East Asian (IC5), or Middle
Eastern/North African (IC6). They are further classified into
subpopulations, in most cases defined at the national level.
Our worldwide coverage is extensive (Fig. 1), but some large
populations are not included, such as Japan and Indonesia,
and the sample sizes from Latin America are small. Our anal-
yses use only allele counts and not individual genotypes. In
a few instances of only one allele observed at a locus, the
peak intensity was insufficient to confirm homozygote status,
leading to only one allele being recorded at that locus. Thus,
total allele counts are not always even integers (Table 1).

Subpopulations with >40 individuals sampled were
included in our analyses. Some subpopulations of particular
interest were also included despite having sample size <40.
We merged or removed other subpopulations with small
sample sizes. Study participants self identified both population
and subpopulation labels, and in some cases we changed the
population classification to better fit the subpopulation, as
described below. These decisions require some subjective
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Figure 1 Countries of origin of the individuals included in the study, coloured according to the
population that provides the best fit according to the indirect method (see text). White indicates
countries represented by fewer than five individuals.

judgement; there is no canonical classification scheme for
human populations.

IC1 and IC2
IC2 individuals from Europe were moved to IC1. Two
national subpopulations were kept distinct, Eire and Great
Britain, while the remaining European subpopulations were
merged according to the United Nations geo-scheme for Eu-
rope (United Nations Statistics Division, 2014):

Eastern Europe: Hungary, Moldova, Poland, Romania,
Russia, Slovakia, Ukraine.

Northern Europe: Denmark, Latvia, Lithuania, Sweden.
Southern Europe: Albania, Bosnia, Croatia, Cyprus, Greece,

Italy, Kosovo, Malta, Macedonia, Portu-
gal, Spain, Yugoslavia.

Western Europe: Belgium, France, Germany, Netherlands.

IC2 individuals from Argentina, Bolivia, Brazil, Columbia,
Mexico, and Venezuela were combined (“Latin America”),
as were IC1 individuals from Australia, New Zealand, and
USA (“Anglo New World”). Those with no subpopulation
identified, and those from Jersey, Northern Ireland, or South
Africa, were removed.

IC3
Six national subpopulations were kept distinct: Ghana,
Jamaica, Kenya, Nigeria, Sierra Leone, and Uganda. The fol-
lowing subpopulations were created from mergers according
to the United Nations geo-scheme for Africa (United Na-
tions Statistics Division, 2014), with Middle and Southern
Africa combined as Central/Southern Africa:

Other W Africa: Benin, Gambia, Guinea, Guinea-Bissau,
Ivory Coast, Liberia, Mali, Togo.

Other C/S Africa: Angola, Chad, Congo, Cameroon, South
Africa.

Other E Africa: Burundi, Ethiopia, Eritrea, Malawi,
Rwanda, Sudan, Tanzania, Zambia,
Zimbabwe.

Other Caribbean: Barbados, Bermuda, Dominica, Guyana,
Grenada, Monserrat, St Lucia, Virgin
Islands, Trinidad.

Individuals with missing subpopulation were included as
“Unknown IC3.” Those with origin not in Africa or the
Caribbean were removed (Eire, GB, USA). Algeria, Egypt,
Morocco, and Somalia were all included with IC6 (see “Best
population fit” below).

IC4
Four national subpopulations were kept distinct: Afghanistan,
Bangladesh, India, Pakistan. Individuals with missing subpop-
ulation, or if the subpopulation was Nepal or Sri Lanka, were
included as “Unknown IC4.” Mauritius was removed.

IC5
SE Asian subpopulations were merged (Cambodia, Indonesia,
Philippines, Thailand, Vietnam). Mongolia and South Korea
were merged with the much larger China sample to form NE
Asia. Fiji was removed.

IC6
Iran, Iraq, Somalia, and Turkey were kept as separate na-
tional subpopulations. Other subpopulations were merged
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into N Africa (Algeria, Egypt, Morocco) or Middle East
(Jordan, Kuwait, Lebanon, Palestine, Qatar, Syria, Yemen,
UAE). Those from Georgia or with no subpopulation iden-
tified were removed. Afghanistan was moved to IC4.

The UK Forensic Science Service (FSS) previously col-
lated (Foreman & Evett, 2001) databases of STR frequen-
cies at 10 loci, in six populations with similar definitions to
our data set: EA1 (Caucasian), EA2 (Mediterranean), EA3
(Afro-Caribbean), EA4 (South Asian), EA5 (East Asian), and
EA6 (Middle East/North Africa). These databases are small
(<2000 individuals combined) and do not include subpop-
ulation labels. EA5 and EA6 both have sample sizes varying
over loci, and the average sample size is reported below. Un-
til recently, these were the reference databases used in most
DNA forensics in the UK. Please note that the IC population
codes refer to our new 16-locus data set, while the EA codes
refer to the historic 10-locus data set.

Filtering Out Possible Relatives
Pairwise allele sharing was measured in all subpopulations,
counting only loci for which both individuals were geno-
typed and including all pairs of individuals that had at least
four genotyped loci in common. If >75% of alleles were
shared, the individual with the fewest loci typed was removed.
For subpopulations with <100 individuals, the threshold for
removal was reduced to 50% allele sharing.

Definition and Estimation of FST

There are various ways to define, estimate and interpret FST

(Bhatia et al., 2013). The original definition (Wright, 1949)
compared the variance of an allele fraction over subpopula-
tions (S) to its variance in the total population (T):

FST = σ 2
S

σ 2
T

= σ 2
S

p (1 − p )
, (1)

where p denotes the population allele fraction. The total
population used in this formulation is usually a hypothetical
ancestral population, from which observed subpopulations are
assumed to have descended (Weir, 2001). However, in forensic
work it is necessary to compare the subpopulation of a suspect
with the population from which the available allele frequency
database has been drawn. Thus, the reference population allele
fractions are observed rather than inferred (Balding & Nichols,
1997). We will refer to these two approaches to estimation of
FST as the indirect and direct methods, respectively.

Moment-based estimators of FST are widely used
(Bhatia et al., 2013), but we take advantage of the benefits
of likelihood-based estimation, which include high precision,
correct accounting for sample size and interpretable inter-
vals and quantiles (Balding, 2003, 2005). Weir & Hill (2002)

proposed maximum likelihood estimation of FST using a nor-
mal approximation to the multinomial, but the multinomial-
Dirichlet (Mosimann, 1962) provides a natural likelihood
without a large-sample assumption. Given a locus with k dis-
tinct alleles, the multinomial-Dirichlet has k−1 parameters
specifying the population allele fractions, which are replaced
with observed values in the direct method and are unknown
parameters in the indirect method. The remaining parameter
λ specifies the variance, and FST = 1/(1 + λ). Throughout
FST will be reported in percent.

Direct Method
The multinomial-Dirichlet likelihood is used for allele counts
in a subpopulation, with reference allele fractions obtained
from reference database counts, adjusted by adding a pseudo-
count of one for each allele in order to avoid zero values. The
FSS databases EA1-6 are used as reference databases through-
out. The direct analyses below only use the 10 loci in common
between our data set and the historic FSS database, which are
the loci with total allele counts > 104 (Table 1).

The likelihood curve for FST can automatically be inter-
preted as a posterior density with respect to a uniform prior.
To formulate an informative prior, we noted previous work
with small sample sizes (Balding & Nichols, 1997) suggesting
that FST typically lies below 4%. Since more diverse subpopu-
lations are considered here, we chose a beta prior distribution
for FST , with median 2.3% and 95% credible interval (CI)
from 0.26% to 8.0%.

To illustrate the effects of sample size, we performed di-
rect estimation under both the uniform and beta priors using
different sample sizes. Multinomial allele counts were simu-
lated based on allele fractions that were Dirichlet-distributed,
with means given by the EA4 allele fractions and λ = 99 so
that FST = 1%. The 95% CI includes 1% at all sample sizes,
and becomes tighter as the sample size is increased (Fig. 2).
For small sample sizes, the beta prior leads to slightly smaller
posterior interval widths than the uniform, and the posterior
median moves towards the prior value.

Figure 3 shows that the choice of prior has a noticeable
effect on the posterior for Iran (n = 13), and less so for
Afghanistan (n = 42), in both cases the informative prior
shifts the FST posterior distribution to slightly higher values
compared with the uniform prior.

Indirect Method and Locus Dependence
The direct method is the most appropriate for forensic ap-
plications because the role of the reference database in FST

estimation matches its role in computing DNA profile like-
lihoods. The indirect method requires no reference database,
so the 10-locus FSS databases are not used in these analyses
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Figure 2 FST posterior 95% interval using: (red) a beta prior with median 2.3% and 95% CI
(0.26%, 8.0%); (blue) the uniform prior. Sample sizes are shown on x-axis. Data were
simulated to have FST = 1% (horizontal line). The vertical lines indicate the 95% equal-tailed
CI, and medians are indicated with horizontal segments.

and we are thus able to utilise 15 of the 16 available loci (SE33
is excluded due to low sample sizes, Table 1).

In the indirect method, the reference population is not
observed, but is assumed to be a hypothetical ancestral popu-
lation from which two or more observed subpopulations have
descended independently. We used the BayesFST software
(Beaumont & Balding, 2004) which implements a Markov
Chain Monte Carlo method to sample from the posterior
distribution of FST in each subpopulation given the allele
counts. BayesFST assigns a jointly uniform prior distribution
to the ancestral allele fractions at each locus, and uses the
model

F i, j
ST = e ai +b j

1 + e ai +b j
, (2)

where a i and b j denote locus and population effects, respec-
tively. All inferences reported below are based on 150 000
posterior values.

We first investigated the variation of FST estimates across
loci, treating IC1 through IC6 as six subpopulations of the hy-

pothetical ancestral population. Each subpopulation param-
eter b j was assigned an N(−3, 1.8) prior, while the locus
parameters a i were assigned an N(0,1) prior. The resulting
prior distribution for FST has a prior median 4.7%, with
95% CI from 0.02% to 92%. Table 2 shows that the poste-
rior 95% CI for the a i include zero for 13 of the 15 loci.
In view of this limited evidence for locus heterogeneity,
we subsequently set the locus effect parameter to be close
to zero in order to estimate an average FST over loci and
hence allow greater comparability across analyses. The im-
plied prior median is then 4.7%, with 95% CI from 0.1% to
63%.

We repeated all analyses with only the 10 loci used in
the direct analyses, and confirmed that resulting inferences
were similar, but on average more precise with 15 loci
(10-locus results not shown). Thus, the differences reported
below between direct and indirect FST values for a sub-
population are almost entirely due to the different refer-
ence population, rather than the different number of loci
used.
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Figure 3 FST posterior densities (solid lines) using the direct method, given a uniform prior (blue) and an informative beta
prior (red). Dotted red lines show the beta prior density. The subpopulations analysed are (left) Iran and (right) Afghanistan, with
the reference populations being EA6 (Middle East/North Africa) and EA4 (South Asia), respectively.

Table 2 Posterior 95% intervals for locus effect parameters using
the indirect method. The analysis used all 7121 individuals with IC1
through IC6 treated as six subpopulations.

Percentile Percentile

Locus 2.5 97.5 Locus 2.5 97.5

D3 −1.72 −0.2 D19 −0.62 0.62
TH01 0.11 1.58 D2 −0.59 0.62
D21 −0.85 0.45 D22 −0.06 1.32
D18 −0.79 0.38 D1 −0.7 0.52
D16 −1.3 0.15 D10 −0.87 0.6
vWA −0.93 0.42 D2 −0.21 1.15
D8 −0.73 0.6 D12 −0.71 0.56
FGA −1.04 0.23

Best Population Fit
Each subpopulation defined above was assigned to the FSS
database giving the “best fit” (lowest median FST under the
direct method), for both direct and indirect method analyses
below. The majority of allocations were as expected: most
European subpopulations fit best with EA1, most African and
Caribbean subpopulations with EA3, all South Asian sub-
populations fit best with EA4, both East Asian subpopula-
tions fit best with EA5 and most Arab subpopulations fit best
with EA6. Three subpopulations close to the Middle East fit
EA6 equally or slightly better than their nominal population:

Southern Europe (EA1), Afghanistan (EA4) and Kenya (EA3).
The nominal classification was retained in each case.

One discrepancy was much larger: Somalia fit better with
EA6 (FST=1.5%) than with the nominal EA3 (FST=2.2%),
and we subsequently included Somalia with IC6. Although
Somalia borders Kenya (EA3), it is also geographically close to
the Arab world, and there have historically been many links.
Mitochondrial (Mikkelsen et al., 2012) and Y-chromosome
(Sanchez et al., 2005) studies have both suggested a strong
Arab influence in Somali genetics, although their highest
similarity is usually with neighbouring Eastern Ethiopians
and Northern Kenyans. HLA typing (Mohamoud, 2006)
also suggests that Somalis are more similar to Arabs than
to sub-Saharan Africans. Pickrell et al. (2014) estimate the
Eurasian ancestry of Somalis at roughly 38% using admixture
mapping, supporting the low FST estimate for Somalia with
the EA6 database.

RESULTS

EA1

When comparing subpopulations to the EA1 reference pop-
ulation (Table 3), all the European subpopulations have an
FST estimate (97.5 percentile) under 1%, except Western Eu-
rope, which has the smallest sample size. The low FST esti-
mate for Southern Europe supports the merging of European-
origin IC2 individuals with IC1, suggesting that IC2 might
usefully be redefined to only include Latin Americans with
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Table 3 The 2.5, 50, and 97.5 posterior percentiles of FST (ex-
pressed as %). Subpopulations were compared both individually with
the reference population EA1 (direct method, 10 loci) and analysed
jointly to infer ancestral allele fractions (indirect method, 15 loci). n
denotes the sample size (number of individuals).

Direct Indirect

IC1 n 2.5 50 97.5 2.5 50 97.5

Eire 1949 0.1 0.2 0.2 0.0 0.0 0.1
Great Britain 1416 0.1 0.1 0.1 0.0 0.0 0.0
Eastern Europe 61 0.2 0.5 1.0 0.1 0.3 0.7
Northern Europe 45 0.0 0.3 0.8 0.0 0.2 0.5
Southern Europe 60 0.0 0.2 0.5 0.0 0.1 0.3
Western Europe 13 0.1 0.7 2.1 0.0 0.5 1.8
Anglo New World 13 0.1 0.5 1.7 0.0 0.3 1.4
Latin America 25 0.5 1.3 2.4 0.6 1.3 2.4

predominantly European ancestry. The Anglo New World
has slightly lower estimates than Western Europe, but Latin
America has a higher FST estimate, presumably due to ad-
mixture with non-European populations.

The indirect method gives lower FST estimates than the
direct method, which is expected because the ancestral
allele fractions are inferred to be towards the centre of the
subpopulation values. However, the FST values for Latin
America are almost unchanged and are again the highest,
because inference of ancestral allele fractions is dominated by
the European populations.

EA3

The mixed subpopulations of West, Central-Southern and
East Africa, as well as Unknown IC3, have lower FST es-
timates under the direct method than the national subpop-
ulations of Ghana, Kenya, Nigeria, and Sierra Leone. The
FST estimate for other Caribbean is high, much higher than
for Jamaica. Jamaicans have a predominantly African origin
(Caribbean Community Capacity Development Programme,
2009), and there are approximately 800 000 people of
Jamaican descent living in the UK (International Organi-
sation for Migration, 2007), which is close to half the UK
population categorised as black (Office for National Statis-
tics, (2011)). Therefore the EA3 database may be expected to
include a large number of Jamaicans.

Indirect estimation (Table 4b) gives noticeably different
results than the direct method. In most cases they are greatly
reduced, the exception being Kenya which is geographically
remote from the majority of subpopulations, which are in
West Africa or the Caribbean. We have noted above that
Kenya fits almost equally well with both EA3 and EA6 using
direct estimation, suggesting some genetic influence from
the Arab world.

Table 4 The 2.5, 50, and 97.5 posterior percentiles of FST (ex-
pressed as %). Subpopulations were compared both individually with
the reference population EA3 (direct method, 10 loci) and analysed
jointly to infer ancestral allele fractions (indirect method, 15 loci). n
denotes the sample size (number of individuals).

Direct Indirect

IC3 n 2.5 50 97.5 2.5 50 97.5

Ghana 214 0.8 1.1 1.6 0.2 0.3 0.5
Jamaica 166 0.5 0.7 1.0 0.0 0.1 0.2
Kenya 51 0.7 1.2 1.9 0.8 1.3 1.9
Nigeria 444 0.9 1.2 1.5 0.2 0.3 0.3
Sierra Leone 41 0.7 1.3 2.2 0.1 0.3 0.8
Uganda 63 0.3 0.5 1.0 0.0 0.2 0.4
Unknown IC3 864 0.4 0.5 0.7 0.0 0.0 0.0
Other Caribbean 20 0.5 1.5 2.9 0.1 0.4 1.3
Other C/S Africa 55 0.3 0.6 1.1 0.0 0.1 0.3
Other E Africa 66 0.3 0.7 1.1 0.0 0.1 0.4
Other W Africa 48 0.1 0.5 1.0 0.0 0.1 0.3

Table 5 The 2.5, 50, and 97.5 posterior percentiles of FST (ex-
pressed as %). Subpopulations were compared both individually with
the reference population EA4 (direct method, 10 loci) and analysed
jointly to infer ancestral allele fractions (indirect method, 15 loci). n
denotes the sample size (number of individuals).

Direct Indirect

IC4 n 2.5 50 97.5 2.5 50 97.5

Afghanistan 47 0.1 0.3 0.9 0.1 0.4 0.9
Bangladesh 53 0.1 0.4 0.9 0.0 0.1 0.4
India 49 0.0 0.3 0.8 0.0 0.1 0.4
Pakistan 60 0.0 0.2 0.5 0.0 0.2 0.5
Unknown IC4 76 0.0 0.2 0.5 0.0 0.1 0.2

EA4, EA5, and EA6

For EA4 and EA5, the FST estimates are all low for both direct
and indirect methods, with no outliers (Tables 5 and 6). The
FST estimates for India and Bangladesh are much lower for
the indirect than the direct method. The FST estimate for NE
Asia is higher than that for SE Asia using the direct method,
but lower using the direct method. This suggests the EA5
database largely consists of individuals from NE Asia.

Most IC6 subpopulations have low sample sizes, and so we
will here discuss the posterior median of FST rather than the
97.5 percentile. Iraq has low FST estimates, much lower than
its neighbour Iran (Table 7). Unsurprisingly, large FST esti-
mates were obtained for Somalia. Results are largely congru-
ent between the direct and indirect method, however, Turkey
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Table 6 The 2.5, 50, and 97.5 posterior percentiles of FST (ex-
pressed as %). Subpopulations were compared both individually with
the reference population EA5 (direct method, 10 loci) and analysed
jointly to infer ancestral allele fractions (indirect method, 15 loci). n
denotes the sample size (number of individuals).

Direct Indirect

IC5 n 2.5 50 97.5 2.5 50 97.5

NE Asia 260 0.1 0.2 0.3 0.1 0.4 0.8
SE Asia 44 0.0 0.2 0.7 0.0 0.1 0.4

Table 7 The 2.5, 50, and 97.5 posterior percentiles of FST (ex-
pressed as %). Subpopulations were compared both individually with
the reference population EA6 (direct method, 10 loci) and analysed
jointly to infer ancestral allele fractions (indirect method, 15 loci). n
denotes the sample size (number of individuals).

Direct Indirect

IC6 n 2.5 50 97.5 2.5 50 97.5

Iran 12 0.1 0.9 2.4 0.1 0.9 2.7
Iraq 28 0.0 0.2 0.7 0.0 0.2 0.7
Somalia 494 1.1 1.3 1.7 1.2 1.6 2.1
Turkey 20 0.1 0.5 1.6 0.2 0.9 2.1
Middle East 24 0.1 0.7 1.8 0.1 0.5 1.6
N Africa 26 0.2 0.7 1.7 0.1 0.6 1.5

has a larger FST estimate using the indirect method, which
may be due to Turkish individuals being well represented in
the EA6 database.

Fringe Regions

We use the term “fringe” for subpopulations that have sim-
ilar affinity to two populations (difference in median FST

<0.001). Broadly speaking these regions reflect an overall
smooth change in allele frequencies with geography, so that
the fringe regions are at the boundaries of our continental-
scale populations (Table 8). Thus, Afghanistan is near the
boundary between IC4 and IC6, and fits them approximately
equally well, S Europe is at the boundary between IC1 and
IC6, and Kenya is the IC3 country nearest to IC6. These re-
sults suggest a relatively low differentiation between IC6 and
all three surrounding populations (IC1, IC3, IC4). Only IC5
is not linked to other populations through a fringe subpopu-
lation, perhaps due to the mountains separating China from
South Asia, and its geographical remoteness from IC1 and
IC3. This agrees with a previous report that East Asian pop-

Table 8 Posterior median FST (%) for fringe subpopulations: These
are subpopulations for which another reference population gives a
median FST estimate using the direct method within 0.001 of the
lowest (best fit) value.

Reference

Fringe EA1 EA3 EA4 EA5 EA6

Afghanistan 1.17 2.90 0.78 1.87 0.78
Kenya 2.32 1.39 2.51 2.32 1.36
Southern Europe 0.30 2.99 1.20 2.03 0.34
Unknown IC4 1.68 2.80 0.62 1.17 0.72

Table 9 Posterior median FST (%):Populations IC1-6 were com-
pared to each reference population in turn using the direct method.
The indirect method was used to compare each population to a
hypothetical global ancestral population.

Reference

Global n EA1 EA3 EA4 EA5 EA6 Indirect

IC1 3582 0.4 3.1 1.9 1.9 0.9 2.7
IC3 2032 1.7 0.7 1.7 1.4 1.1 1.0
IC4 285 1.4 3.1 0.7 1.3 0.8 2.3
IC5 304 3.1 4.2 2.4 0.5 2.0 3.3
IC6 604 1.8 1.7 1.9 1.7 0.9 1.4

ulations are distinct from those of South Asia, but are close
to South East Asian populations (HUGO Pan-Asian SNP
Consortium, 2009).

Inter-Population Comparisons

Above we have compared subpopulations with continental-
scale reference populations, and now we make comparisons
among those populations. Each column of Table 9 shows a
different FST analysis of the five IC populations, using an EA
database as the reference database in the direct method, or
using the indirect method.

For the direct method, each IC database showed the best fit
(lowest FST estimate) with its cognate EA database, reflecting
a reasonable consistency of definitions between IC and EA
databases. The highest FST value for IC1, IC4 and IC5 are
all obtained relative to EA3. Conversely, looking down the
columns of Table 9, IC5 shows the highest FST value for each
EA database except EA5. The IC6 database is influenced by
the large sample size from Somalia, and shows similar FST

values with respect to all four EA databases other than EA6.
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Using indirect estimation, IC3 and IC6 show the lowest
FST values, while IC5 shows the highest value, corresponding
to an inferred ancestral human population similar to that of
modern North-East Africa (Pemberton et al., 2013).

Discussion

Although we have only examined 10 or 15 STR loci in this
study, their multi-allelic nature and the large sample sizes for
many subpopulations means that we have been able to achieve
good precision in many of the FST estimates that we report, as
indicated by the 95% posterior intervals. We have shown that
FST estimates depend sensitively on the choice of reference
population, and in particular that the use of a population ref-
erence database can generate very different FST estimates from
those based on a hypothetical ancestral population, which is
the usual practice in population genetic studies.

Silva et al. (2012) collated STR databases worldwide, and
reported a global FST estimate from forensic data sets of 2.3%,
comparable with inter-population estimates reported here
(Table 9), while the corresponding estimate from the non-
forensic Human Genome Diversity Project (HGDP) data set
was more than twice as high, at 5.3%. Silva et al. suggest that
this discrepancy is due to forensic markers being selected to
have low differentiation among populations. However, they
also demonstrate that selecting high heterozygosity markers
decreases RST , and current forensic markers were selected in
part to achieve high heterozygosity. The difference may also
reflect larger and more ethnically mixed populations being in-
cluded in forensic surveys, while the HGDP data set includes
many ethnically distinct populations, often of small size.

Nelis et al. (2009) used the HapMap SNP database (before
the upgrade to HapMap 3) to estimate continental genetic
distance between Africa, Asia, and Europe. The FST values
ranged from 11% (Europeans compared with Asians) to 19%
(Africans compared with Asians), much higher than the STR-
based estimates reported here and in Silva et al. (2012). This
may be due to the high STR mutation rate (Weber & Wong,
1993) tending to stabilise allele fractions across populations,
for example through mutations in short alleles tending to
favour expansion, while contractions are favoured in long al-
leles (Sibly et al., 2003; Dupuy et al., 2004; Lu et al., 2012).
Excoffier & Hamilton (2003) demonstrated that the discrep-
ancy between FST estimates from SNP markers and those
from STR markers can be removed by taking into account
the stepwise mutation seen at STR markers. However, the
broad pattern of variation is similar for STRs as for SNPs
(Ramachandran et al., 2005; Pemberton et al., 2013).

One motivation for this research is to guide forensic prac-
tice, and overall we find that FST ≤ 3% should be appropriate
for most forensic calculations. The 97.5 posterior percentile

for FST lies under 3% for all subpopulations relative to their
best fit population, consistent with more limited previous
results (Balding & Nichols, 1997; Gill et al., 2003). Low val-
ues can be justified in some settings, for example FST =
1% appears adequate for Asians (both South and East), but
FST = 3% would be more robust against incorrect assign-
ment of reference population for an unknown contributor.
In some cases it may be possible to tailor the FST value to
specific circumstances, for example a lower FST value may be
appropriate for alternative contributors who are known to be
Jamaican, rather than from another Caribbean island.
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When evaluating the weight of evidence (WoE) for an individual to be a contributor to a DNA sample, an allele
frequency database is required. The allele frequencies are needed to inform about genotype probabilities for
unknown contributors of DNA to the sample. Typically databases are available from several populations, and a
common practice is to evaluate the WoE using each available database for each unknown contributor. Often
the most conservative WoE (most favourable to the defence) is the one reported to the court. However the
number of human populations that could be considered is essentially unlimited and the number of contributors
to a sample can be large, making it impractical to perform every possible WoE calculation, particularly for
complex crime scene profiles. We propose instead the use of only the database that best matches the ancestry
of the queried contributor, together with a substantial FST adjustment. To investigate the degree of conservative-
ness of this approach, we performed extensive simulations of one- and two-contributor crime scene profiles, in
the latter case with, and without, the profile of the second contributor available for the analysis. The genotypes
were simulated using five population databases, which were also available for the analysis, and evaluations of
WoE using our heuristic rule were compared with several alternative calculations using different databases.
Using FST= 0.03, we found that our heuristic gaveWoEmore favourable to the defence than alternative calcula-
tions in well over 99% of the comparisons we considered; on average the difference in WoE was just under 0.2
bans (orders of magnitude) per locus. The degree of conservativeness of the heuristic rule can be adjusted
through the FST value. We propose the use of this heuristic for DNA profile WoE calculations, due to its ease of
implementation, and efficient use of the evidence while allowing a flexible degree of conservativeness.
© 2014 The Authors. Published by Elsevier Ireland Ltd. on behalf of Forensic Science Society. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

In forensic DNA analysis, unknown contributors to a DNA profile are
usually considered to come from one of several populations for which
an allele frequency database is available. The choice of database can
have an important impact on weight of evidence (WoE): the rarer an
allele the stronger the evidence implicating a queried contributor
(Q) if he has that allele and it is observed in the crime scene profile
(CSP). The most appropriate population is the one that best matches
the ancestry of X, the true source of the DNA. Under the prosecution
case X is assumed to be Q, but under the defence case there is often little
or no information about the ancestry of X. Many authors have noted
that the database most appropriate for Q is not necessarily most appro-
priate for X [6,4]. Conversely, [3] argue for using the database of Q even
if the ancestry of X is unknown, in part because the observation of the
profile of Q introduces a size-bias effect: an observed profile tends to

be more common in the population in which it was observed than in a
different population. Thus, having observed the profile of Q, on average
the probability for X to have the same profile is higher if X is assumed to
come from the same population.

In current forensic practice, when the ancestry of X is unknown, it
is common to consider multiple population databases and choose the
one that generates the lowest WoE. There should be no requirement
to favour defendants in this way. Suppose for example that Q is
Caucasian but it is discovered that the lowest WoE is obtained using a
database of Vietnamese individuals. If the population local to the
crime includes few Vietnamese and there is no evidence to suggest
that a Vietnamese person was the source of the DNA, it may not be
helpful to the court to report the WoE arising from the Vietnamese
database. Similarly, the world's population can be categorised in a vast
number of different ways, and it is not possible to investigate them all
in order to report the smallest WoE. However, a forensic expert should
make reasonable allowance for the different possible ancestries of X,
given the available knowledge about the location and nature of the
crime. It can be expedient to make approximations that favour the
defence in order to permit simplified analyses while avoiding court-
room challenges. Here we propose a heuristic for WoE analysis that
involves only one calculation, using the database most appropriate for
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Q. We show that our heuristic tends to strongly favour defences
compared with a range of alternative calculations.

For a one-contributor CSP when there are only, say, five population
databases, it is usually easy to compute the WoE for each database
and choose the one most favourable to the defence. However, for
mixed profiles, the computational effort to consider multiple databases
for each unprofiled contributor can be substantial. Thus our heuristic
that computes the WoE only using the database of Q would be attrac-
tive, provided that it can be established to be conservative (favourable
to the defence). If X is from the same population as Q then it becomes
relevant to consider that theymay also come from the same subpopula-
tion, in which case an FST adjustment may be required [3]. We have
recently published worldwide FST estimates appropriate for forensic
use [7] and concluded that choosing FST = 0.03 is sufficiently large to
be almost always conservative. The effect of the FST adjustment is to
increase the probability assigned to the alleles of Q, and consequently
decrease the probability for other alleles. Although the rationale for an
FST adjustment is to allow for the possibility that X has ancestry similar
to that of Q, we illustrate below that for FST = 0.03 our heuristic
calculation is conservative even if X could have come from one of
several different populations. It is for this reason that our heuristic
uses the same value of FST whatever the population of Q, even though
within-population FST values differ across populations.

A similar argument applies to other contributors to a mixed CSP.
Consider a two-contributor profile, one of the contributors being X,
who is alleged to be Q. If the reference profile of the other contributor
is known, as is often the case for a victim or bystander, there are no
probabilities to assess for the alleles of that individual and so the
question of the appropriate population database is essentially the
same as for the one-contributor case. When the reference profile of
the other contributor, say U, is unavailable, then we show that it is
conservative to use for both X and U the database best matching the
ancestry of Q, again with FST = 0.03. The FST adjustment under our
heuristic only increases the population allele fraction for the alleles of
Q, which is helpful to defences because it increases the probability
that X or U share alleles with Q, thus increasing the support for the
defence explanation of the observed CSP.

It is not feasible or desirable to guarantee that a proposed WoE
calculation is more favourable to the defence than any conceivable
alternative calculation. We perform simulation experiments which
show that for UK population databases our heuristic WoE calculation
is, with probability ≫0.99, more favourable to defendants than a
range of reasonable alternative calculations. We first simulate single-
contributor CSPs matching the reference profile of the alleged contribu-
tor Q. Then the WoE for Q to be a contributor is calculated using the
correct database (that used for the simulation) and is compared with
the smallest WoE calculated using in turn four other databases. We
repeated this exercise for one database using allele fractions that differ
from the database values according to each of three values of FST, and
show that our heuristic remains conservative compared to the WoE
from the four alternative databases.

We then simulate two-contributor CSPs using all possible choices of
two databases from the five available, and compare theWoE computed
using the database of Q for both contributors (and FST = 0.03) with
(a) the correct assignment of databases, (b) the minimum WoE using
each of the four alternative databases for both X and U, and (c) the
minimum WoE over the four databases for X, always using the correct
database for U. In all our calculations, an adjustment using FST = 0.03
is applied to the alleles of Q when the database of Q is used for X.

When a calculation is performedusing a database different from that
of Q, perhaps because of evidence about the ethnic background of X,
coancestry is not relevant and so it is appropriate to use FST = 0. It has
been suggested [2] that even in this setting it would be cautious to use
a low value of FST such as 0.01. This introduces some bias in favour of
the defendant in order to allow for the ancestry of X to differ somewhat
from the database population. Here we assume that there is no specific

suggestion of an alternative population for X, and since a bias in favour
of defendants is introduced by taking the minimum WoE over four
alternative database choices, we use FST = 0 in calculations using
databases different from that of Q.

It is possible that the true ancestry of Q is unknown or misassigned,
for example if he impersonates another individual, or an assessment of
his physical appearancewas incorrect. Hemay also be ofmixed ancestry
or some other ancestry not well represented in the available databases.
In that case there is no size-bias effect tending to make the observed
profile of Q more common in the population to which he is assigned
than in other populations. However, although such an error may have
an adverse impact on the calculated WoE, the generous value of FST is
the main factor underlying the conservative nature of theWoE analysis
that we propose, and so the impact of any population misassignment of
Q will be relatively small.

2. Materials & methods

2.1. Databases

We have used frequency data at 16 STR loci for five UK populations:
Caucasian (IC1), African and African Caribbean (IC3), South Asian (IC4),
East Asian (IC5) and Middle Eastern (IC6) (Table 1). For further details
of the dataset, see [7]. We used these data to simulate 16-locus profiles
assuming Hardy–Weinberg and linkage equilibria. Neither dropin nor
dropout are included in the simulations, nor are they allowed for in
the analyses.

The WoE is computed using the likelihood ratio framework [5], and
reported in bans (= log10(likelihood ratio)) comparing a hypothesis
that includes Q as a contributor with an alternative in which Q is
replaced by X, assumed to be unrelated to Q. We implement FST
adjustment [2] to the population fractions of the alleles of Q whenever
the database most appropriate for Q is used for X; the adjustment uses

Table 1
Number of allele observations at each locus for each population database: Caucasian (IC1),
Afro-Caribbean (IC3), South Asian (IC4), East Asian (IC5) and Middle Eastern (IC6).

Allele counts IC1 IC3 IC4 IC5 IC6

D3S1358 6878 3941 520 599 1202
TH01 6816 3918 514 598 1202
D21S11 6870 3941 520 599 1199
D18S51 6808 3930 520 600 1195
D16S539 6818 3927 514 600 1199
VWA 6877 3936 520 600 1201
D8S1179 6871 3941 520 600 1202
FGA 6853 3938 516 600 1201
D19S433 6702 3868 507 595 1197
D2S1338 6443 3758 491 594 1176
D22S1045 1816 2482 421 498 954
D1S1656 1827 2508 426 504 959
D10S1248 1815 2499 416 500 912
D2S441 1800 2473 420 493 943
D12S391 1857 2543 437 499 945
SE33 368 872 237 394 268

Table 2
Meanweight of evidence (WoE) for the heuristic rule and the alternatives discussed in the
text. The mean of the differences between the heuristic and alternative scenarios is also
shown. The % Difference row shows the mean difference as a percentage of the average
of the heuristic and alternative means.

Contributors under Hd X X + K X + U

True both True U Same dbase

Heuristic (bans) 20.3 17.8 10.7 10.7 10.7
Alternative (bans) 24.5 20.7 12.8 14.1 14.0
Difference (bans) 4.2 3.0 2.1 3.4 3.2
Difference (%) 18.8 15.6 17.9 27.4 25.9
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FST = 0.03, and otherwise FST = 0. In all calculations one was added to
the database count for each allele of Q, introducing a bias against
understating the frequencies of rare alleles [1].

2.2. Simulation experiments

Initially a series of 10 000 one-contributor CSPs were simulated,
using in turn allele fractions from each of the five population databases
(so 50 000 profiles in total). The WoE for each simulated CSP was
calculated five times, each time comparing hypotheses of the form:

Hp : Q

Hd : X

but using a different database. The minimum WoE over the four
incorrect databases was then subtracted from the WoE computed
using our heuristic (which uses the database of Q and FST = 0.03), so
that a negative result indicates that it is favourable to the defence to
report our heuristic WoE irrespective of the ancestry of X.

A second set of one-contributor analyses was conducted to investi-
gate the effect of Q having an ancestry that differs from all of the
available databases. Simulations were based on the IC1 database but
with allele fractions differing from the IC1 values according to three
FST values (0.01, 0.02, and 0.03). Ten thousand CSPs were simulated
for each FST value (30 000 in total). The hypotheses compared were
the same as above, and our heuristic was again applied (using the IC1
database) from which was subtracted the minimum WoE using each
of the four other databases.

Next, 25 sets of 1000 two-contributor profiles were created, one for
each choice of databases for the two contributors. The hypotheses
compared were of the form:

Hp : Q þ K

Hd : Xþ K

where K denotes that the second contributor was known (the reference
profile was available for the analysis). The WoE computed using our
heuristic was compared with the minimum WoE computed using
each of the four alternative databases.

We then performed a series of analyses based on the same simula-
tions but now assuming that the uncontested contributor to the two-
contributor profiles was unknown, and so the hypotheses compared
were of the form:

Hp : Q þ U

Hd : Xþ U

For each dataset we computed the WoE using our heuristic with
three alternative WoE calculations.

The first alternative WoE calculation used the correct database for
each of X and U, which differs from our heuristic in the 20 datasets
with Q and U simulated from different databases. This alternative may
be regarded as the most appropriate WoE, while our heuristic WoE is
biased in favour of the defence because the FST adjustment increases
the probability for U to share alleles with Q. The second alternative,
applicable in all 25 datasets, uses the lowest WoE obtained over all
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Fig. 1. The effect of database on weight of evidence (WoE) calculations for a one-contributor CSP. The databases are described in Table 1. The x-axis shows theWoE computed using the
database from which the contributor Q was simulated (indicated in the subplot title) with FST = 0.03, minus the lowest WoE computed using each of the four alternative databases and
FST = 0. P(d N x) indicates the proportion of differences that are N x.
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possible databases for X, using the correct database for U. The third
alternativeWoE calculation, also applied in all 25 datasets, uses the low-
est WoE over the four alternative databases, the same for both X and U.

3. Results

Table 2 shows summary results for the five simulation experiments.
As the difficulty of the inference problem increases and the mean WoE
decreases, the mean difference between our heuristic and the alterna-
tives considered also decreases in absolute terms, but increases as a
percentage of the alternative WoE. We have not considered three or
more contributors because the computational demands of a large
simulation study are prohibitive, but this trend suggests that for CSPs
with three or more contributors, the mean difference between our
heuristic and the alternative WoE would be a large percentage of the
latter.

In one-contributor tests, our heuristic gives, with probability N0.999,
a lowerWoE than any of the four alternative calculations (Fig. 1). There
were two instances in 50 000 simulated profiles of an advantage to the
defence from using one of the alternative databases. On average,
the WoE obtained using our proposed calculation is lower by 0.3 bans
(1 ban = 1 order of magnitude) per locus than the minimum over the
four alternative calculations (Table 2, column 1). When the tested
individuals are not simulated directly from the database allele frequen-
cies, but differ according to FST= 0.01, 0.02 and 0.03, we found that the
number of comparisons that are not conservative is at most 3 out of 10
000, which is as expected higher thanwhenQ is simulated directly from
the IC1 database (0 non-conservative out of 10 000) but the difference is
small and not significant.

Including a known contributor reduces theWoE for both our heuris-
tic and the minimum of the four alternatives by about 3 bans (Table 2,
column 2). The difference between them remains similar to that for
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Fig. 2.The effect of database onweight of evidence (WoE) for two-contributor CSPs. The databases are described in Table 1. The x-axis shows theWoE computed using the database of Q for
both contributorsminus that obtained using the correct databases for X and U. The title of each subplot indicates the databases fromwhich each contributorwas simulated, where Q is the
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the one-contributor analyses (column 1). The fraction of simulations in
which our heuristic was conservative ranged from 0.994 to 0.999 across
the five databases used to simulate Q.

When the additional contributor is unknown (U rather than K), the
fraction of simulations in which our heuristic was conservative
compared with using the correct databases for each of X and U was on
average 0.997, and at least 0.993 over the 20 choices of databases for
X and U (Fig. 2). The reason that our heuristic is conservative is that it
is helpful to the defence to maximise the probability that U has alleles
matching those of Q, and this is achieved in our heuristic using the
database of Q together with FST = 0.03. The probabilities assigned to
alleles of U not shared with Q are less important because these have a
similar effect under both prosecution and defence hypotheses. Using
our heuristic, P(WoE N 9) = 0.903, and so the LR is usually but not
always in excess of one billion.

Fig. 3 shows that the WoE computed under our heuristic is almost
always (P N 0.995) less than the minimum value over the four

alternative choices of database for X, with U always assigned the correct
database. Finally, Fig. 4 shows that if the same database is used for both
X and U, it is conservative (P N 0.996) to use our heuristic.

4. Discussion

We have shown that for a one-contributor setting, our heuristic
WoE calculation that uses only the database of the queried contributor
Q is almost always conservative (favours defences) compared with
choosing the lowestWoE among four other databases for the alternative
contributor X (Fig. 1). Similar results hold when there is additionally an
uncontested contributor K with reference profile available. When the
additional contributor is unprofiled, using the database of Q for both X
and U is almost always conservative compared to (a) using the correct
database for each of X and U (Fig. 2), (b) using the correct database
for U, and choosing the most favourable alternative database for X
(Fig. 3), and (c) choosing the most favourable among alternative
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Fig. 3.The effect of database onweight of evidence (WoE) for two-contributor CSPs. The databases are described in Table 1. The x-axis shows theWoE computed using the database of Q for
both contributorsminus theminimumWoEobtained over all other choices of databases for X, always using the correct database for U. The title of each subplot indicates thedatabases from
which each contributorwas simulated. The x-axis labels indicate the databases used for each contributor in the analysis (!IC1 indicates all databases other than IC1). P(d N x) indicates the
proportion of differences that are N x. Colour indicates the database of Q.
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databases, that database being used for both X and U (Fig. 4). In all
calculations we used FST = 0.03 when the database of Q was used, and
FST = 0 otherwise. The FST adjustment increases the population
probabilities for the alleles of Q, but not other alleles observed in the
CSP nor any other available reference profiles.

In all our simulations, our heuristic is conservative compared
with the alternative calculations considered in at least 99.3% of the
simulations, and in the few instances that it was not conservative the
difference was always b 1.5 bans. Theworld's population can be divided
into an unlimited number of different subpopulations; therefore
there can be no precisely correct choice of alternative subpopulations
to consider. What is required is an average WoE over each possibility
for the ancestry of the alternative contributor X, weighted by its plausi-
bility given the known circumstances of the crime. Our heuristic will al-
most certainly give a result that is more favourable to defendants. We
have verified that our good results are not favourably biased because
Q is sampled from the same database used in the analysis.

The degree towhich our heuristic favours defences can be controlled
by changing the value of FST from 0.03 used here. [7] found that FST =
0.03 exceeds almost all median FST values from world-wide compari-
sons of subpopulations with continental-scale populations, and we
have shown here that it also suffices to ensure that using the database
of Q with this FST value almost always returns a lower WoE than a
range of alternative calculations.

We have not performed simulations for three or more unknown
contributors because of the prohibitive time required for a simulation
study, but the same principles apply to ensure that our heuristic will
be similarly conservative. The large average reduction inWoE compared
with the two-contributor case suggests that the difference in WoE will
also be reduced, although it is expected to increase as a fraction of the
overall WoE (see Table 2).

Webelieve that our heuristic offers a good policy forWoE calculation
based on DNA evidence that is easy to implement, and almost always
favourable to defendants relative to reasonable alternative policies.
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Fig. 4.The effect of database onweight of evidence (WoE) for two-contributor CSPs. The databases are described in Table 1. The x-axis shows theWoE computed using the database of Q for
both contributorsminus theminimumWoE obtained over using eachother database in turn for bothX andU. The title of each subplot indicates the databases fromwhich each contributor
was simulated. The x-axis labels indicate the database used for both contributors in the analysis. P(d N x) indicates the proportion of differences that areN x. Colour indicates the ancestry of
Q.
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Because it is favourable to defendants to use the database most appro-
priate for Q, it will therefore generally be unfavourable to defendants
if the wrong database is used because the ancestry of Q is misassigned,
or because there is no appropriate database. However the relatively
large value of FST is the main factor in ensuring that our heuristic
tends strongly to favour defendants, and so while misassigning the da-
tabase of Q will have some detrimental impact, it will usually be small
and outweighed by the impact of the FST value.

Acknowledgments

CDS is funded by a PhD studentship from the UK Biotechnology and
Biological Sciences Research Council (BB/J012963/1) and Cellmark Fo-
rensic Services (CMD-PHD1).

References

[1] D.J. Balding, Estimating products in forensic identification using DNA profiles, J. Am.
Stat. Assoc. 900 (431) (1995) 839–844 (0).

[2] D.J. Balding, Weight-of-evidence for Forensic DNA Profiles, Wiley. com, 2005.
[3] D.J. Balding, R.A. Nichols, DNA profile match probability calculation: how to allow for

population stratification, relatedness, database selection and single bands, Forensic
Sci. Int. 640 (2) (1994) 125–140 (0).

[4] L.A. Foreman, J.A. Lambert, I.W. Evett, Regional genetic variation in Caucasians,
Forensic Sci. Int. 950 (1) (1998) 27–37 (0).

[5] P. Gill, C.H. Brenner, J.S. Buckleton, A. Carracedo, M. Krawczak, W.R. Mayr, N. Morling,
M. Prinz, P.M. Schneider, B.S. Weir, DNA commission of the International Society of
Forensic Genetics: recommendations on the interpretation of mixtures, Forensic Sci.
Int. 1600 (2) (2006) 90–101 (0).

[6] National Research Council, The Evaluation of Forensic DNA Evidence, National
Academies Press, Washington DC, 1996.

[7] C.D. Steele, D. Syndercombe Court, D.J. Balding, Worldwide FST estimates relative to
five continental-scale populations, Ann. Hum. Genet. 78 (6) (November 2014)
468–477.

493C.D. Steele, D.J. Balding / Science and Justice 54 (2014) 487–493



Evaluation of low-template DNA profiles using peak heights
Christopher D. Steele, Matthew Greenhalgh and David J. Balding

Abstract
In recent years statistical models for the analysis of complex (low-template and/or mixed) DNA

profiles have moved from using only presence/absence information about allelic peaks in an electrophero-
gram, to quantitative use of peak heights. This is challenging because peak heights are very variable and
affected by a number of factors. We present a new peak-height model with important novel features,
including over- and double-stutter, and a new approach to dropin. Our model is incorporated in open-
source R code likeLTD. We apply it to 108 laboratory-generated crime-scene profiles and demonstrate
techniques of model validation that are novel in the field. We use the results to explore the benefits
of modelling peak heights, finding that it is not always advantageous, and to assess the merits of pre-
extraction replication. We also introduce an approximation that can reduce computational complexity
when there are multiple low-level contributors who are not of interest to the investigation, and we present
a simple approximate adjustment for linkage between loci, making it possible to accommodate linkage
when evaluating complex DNA profiles.

1 Keywords
Low-template DNA, DNA mixtures, likelihood ratio, peak heights, forensic, likeLTD

2 Introduction
The computation of likelihood ratios (LRs) for complex forensic DNA evidence has progressed in recent
years from using only presence/absence of alleles inferred from an electropherogram (epg), (Gill et al.,
2000, 2008, 2012; Balding and Buckleton, 2009; Balding, 2013) to the use of quantitative peak heights
(Graversen and Lauritzen, 2014; Cowell et al., 2015; Bleka et al., 2016; Puch-Solis et al., 2013; Bright
et al., 2013b; Perlin et al., 2011). The LR approach to evaluating weight of evidence has long been
preferred for standard DNA profiles (Gill et al., 2006, 2012), and for complex profiles there appears to
be no realistic alternative. It takes the form:

LR = Pr(E|Hp)
Pr(E|Hd) , (1)

where E is the DNA evidence, consisting of an epg representing the crime scene profile (CSP) and the
reference profiles of at least one possible contributor, while Hp is a hypothesis corresponding to the
prosecution case that is contrasted with a defence hypothesis Hd. Hp includes a profiled individual,
Q as a contributor of DNA to the CSP. Hd is often the same as Hp except that Q is replaced by an
unprofiled individual. If there are multiple queried contributors then a series of LRs can be computed
each contrasting a queried contributor with an unprofiled alternative.

If Q is a contributor of DNA to the CSP then peaks are expected in the epg corresponding to
the alleles in the reference profile of Q. However, if Q is a low-template contributor peaks can be sub-
threshold or absent for some alleles, which is known as dropout. For mixed CSPs, contributors may share
alleles making it difficult to evaluate evidence for the presence of DNA from Q. Interpretation is further
complicated by experimental artefacts such as stutter and dropin (see below). Peak height information
can help reduce the impact of these issues. For example, dropout is only plausible if the heights of
the observed peaks indicate low DNA mass from that contributor. Further, consider a CSP with peak
heights 80, 790, 640 and 90 at alleles 13, 14, 15 and 16, respectively. The peak heights support a major
contributor with genotype 14,15. They also indicate that the 13 allele may be partly or entirely due to
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Program Peak height Param. Stutter Dropin D O Deg Open
dist. elim. model model model source

DNAmixtures1 Γ Max. Constant Extra U × × × Partial
EuroForMix2 Γ Both Constant exp(dropin PH) × × X X

LiRa3 Γ Max. Linear (bp) Γ(dropin PH) × × × ×
likeLTD Γ Max. Linear (LUS) Dropin dose X X X X
STRmix4 logN Int. MUS exp(dropin PH) × X X ×

TrueAllele5 N Int. X X ? ? X ×

Table 1: Summary of current software for evaluation of complex DNA profiles using peak heights. Distribu-
tions: Γ=gamma, logN=lognormal, N=truncated normal. Parameter elimination methods: maximisation
(Max.) or integration (Int.). Stutter models: the expected fraction of parent peak height lost to stutter is
either constant, linear or varies with all uninterrupted sequences in the amplicon (MUS); in the middle case
the linearity is either with the length of an allele in base pairs (bp), or with longest uninterrupted sequence
(LUS). Dropin can be modelled as an extra unknown contributor (U), or the dropin peak heights (PH) have
an exponential (exp) or gamma (Γ) distribution, or a dropin dose is added to every allelic position. D =
double-stutter, O = over-stutter, Deg = degradation. DNAmixtures is partly open source but requires the
commercial software HUGIN. For TrueAllele ticks indicate that the phenomenon is modelled but details are
unknown, while question marks indicate that we are not aware if the phenomenon is modelled. For all other
models ticks and crosses indicate that the phenomenon is or is not modelled. 1: Graversen and Lauritzen
(2014), 2: Bleka et al. (2016), 3: Puch-Solis et al. (2013), 4: Bright et al. (2013b), 5: Perlin et al. (2011).

stutter from the 14 peak, and statistical modelling can generate probabilities for a minor contributor
genotype to be either 13,16 or 14,16, with some other possibilities also having non-zero probabilities,
such as 16,16 or 16,F, where F denotes a dropped-out allele.

While there are multiple models and software now available for computing LRs using peak heights,
our new model has important features not currently available, as well as modelling choices that differ
from other programs (see Table 1 for a summary). Moreover our likeLTD software is open-source and
easily accessible from the comprehensive R archive network (CRAN). Because of the importance of DNA
profile analysis to society and the lack of a definitive test of validity, it is important to have alternative
models available for study and comparison by researchers and practitioners.

A full comparison of the available models is beyond the scope of this article, but we highlight here
some important distinctions. Stutter models range in complexity from a constant stutter fraction across
the whole epg, through models that have a locus-specific linear relationship between stutter rate and the
longest uninterrupted sequence (Brookes et al., 2012; Bright et al., 2013b; Kelly et al., 2014), to models
that account for multiple uninterrupted sequences (MUS) (Taylor et al., 2016). likeLTD uses the middle
approach, but fixes the intercept to zero, which we found to improve performance by reducing the number
of parameters requiring estimation. Moreover likeLTD appears to be unique in modelling double-stutter.
In addition, likeLTD has a more realistic dropin model: dropin is modelled as a contribution to expected
peak height at every allele, in proportion to the population allele fraction. An important difference
between models is the choice of probability distribution for peak heights: most models employ a gamma
distribution, whereas STRmix adopts the lognormal and TrueAllele a truncated normal distribution.
Some models do not incorporate the effects of DNA degradation on peak heights. All models that do
include degradation, likeLTD among them, assume an exponential decline of expected peak height with
allele fragment length. Lastly, likeLTD and EuroForMix are the only fully open-source software.

We validate the likeLTD peak-height model using 108 laboratory-generated mixtures. We show
that it behaves as predicted by theory in relation to probability intervals for peak heights, inference of
contributor genotypes and with additional replicates (Steele et al., 2014a).

Replication is often viewed as a cornerstone of the scientific method, and if it can be performed
without cost it is clearly desirable, for example to guard against failure of a profiling run. DNA extraction
protocols typically produce a fixed volume which exceeds that required for PCR, so that post-extraction
replication is available “for free”. Some protocols may not give this free replication, such as purifying
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a low-concentration extract through dialysis (Williams et al., 1994), filtering through a spin column
(McCord et al., 1993; Ruiz-Martinez et al., 1998), or alcohol/salt precipitation (Nathakarnkitkool et al.,
1992). If replication is achieved at the cost of splitting an already low quantity of DNA, for example prior
to DNA extraction, then its merits are less clear. Although each replicate profile will be of lower quality
than a single profile that uses all the available DNA, statistical analysis that combines information
across replicates can recover information lost in individual replicates, and possibly exploit additional
information because the replicate samples will have (slightly) different ratios of DNA mass from different
contributors, leading to better overall discrimination of their alleles (Steele et al., 2014a). Here we
simulate pre-extraction replication by splitting DNA samples with x pg DNA into n samples with x/n
pg DNA each, in order to assess its merits when analysis is performed using a statistically-efficient
peak-height model.

We investigate reducing the computational complexity of likelihood calculations by modelling an
unknown minor contributor as dropin, thus reducing the number of genotypes that must be inferred.

We present a simple adjustment to the LR that accounts for linkage between loci when X is assumed
closely related to Q, excluding parent-offspring relationships. This has become a concern with the
adoption of STR typing kits with multiple loci on a single chromosome.

The LR will be reported here in terms of the Information Gain Ratio (IGR = log10(LR)/log10(IMP)).
IGR allows for easy comparison of LRs across different Q, as max(IGR) = 1.0 for every Q.

3 Materials & Methods
3.1 The likeLTD peak-height model
Computations are performed separately under Hp and Hd. Let C denote the set of contributors under a
given hypothesis. Suppose that the CSP replicates are indexed by the elements of a set R, and include
loci in the set L, while Il denotes the set of possible alleles at locus l ∈ L. Each element of Gl is an
allocation of genotypes at locus l to each c ∈ C. The genotype of Q is constant over Gl, and similarly for
other c with reference profile available, but the elements of Gl vary according to the genotypes allocated
to unprofiled c. Population genotype probabilities are assumed given. In practice, allele probabilities
are obtained from a database, possibly using a sampling adjustment, and genotype probabilities are
derived as products of allele probabilities assuming Hardy Weinberg equilibrium, possibly with an FST

adjustment (Balding and Steele, 2015).
Let χc denote the effective DNA mass at a heterozygote allele of c ∈ C in the first replicate, expressed

in RFU, a unit of peak height. To compute the expected contribution from c to the height of an epg
peak at allele i ∈ Il for a given g ∈ Gl, we first adjust for the genotype of c specified by g, the replicate
r ∈ R, and DNA degradation:

Pl,r,g,c,i = ng,c,iρrχc

(1+δc)fi
, (2)

where ng,c,i ∈ {0, 1, 2} indicates the number of i alleles in the genotype of c and ρr denotes a replicate
adjustment (ρ1 = 1), while δc is a parameter measuring the degradation of DNA from c and fi is the
mean adjusted length of allele i in base pairs. Each Pl,r,g,c,i must next be adjusted for the fractions that
stutter to allelic position i−1 (S), double-stutter to i−2 (D) or over-stutter to i+1 (O). Whereas D
and O are global constants, because these are rare events and it would be difficult to parametrise the
relationship, we propose a zero-intercept linear model for S:

Sl,i = αlui.

Here, αl is the locus-specific coefficient of ui, the longest uninterrupted sequence (LUS) of allele i (Brookes
et al., 2012; Bright et al., 2013b; Kelly et al., 2014). To compute the expected peak height at allele i in
replicate r for a given g, each Pl,r,g,c,i is incremented with any stutter contribution from allele i+1, double
stutter from i+2 and over-stutter from i−1, and summed over contributors c. Finally, a contribution
from dropin is added. This gives the expected peak height as:

El,r,g,i = λpi

(1+δ)fi
+

∑

c∈C

(OPl,r,g,c,i−1 + (1−Sl,i−D−O)Pl,r,g,c,i +Sl,i+1Pl,r,g,c,i+1 +DPl,r,g,c,i+2). (3)
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where pi is the population allele fraction and λ is a dropin parameter, in RFU. Note that dropin of an
allele is assumed to occur in proportion to its population frequency, and is adjusted for degradation with
a dropin-specific rate δ.

The peak height at allelic position i is then assumed to have a gamma distribution with expectation
El,r,g,i and variance σEl,r,g,i. The scale parameter σ is a global constant, so that values of l, r, g and
i affect peak-height variance only through the mean. In likeLTD we treat peak heights as discrete:
observed values are recorded to the nearest integer RFU value, say j, and we compute the corresponding
probability as the gamma probability mass between j−0.5 and j+0.5. The dropout probability is the
gamma probability mass assigned to the interval (0, tl−0.5), where tl is the detection threshold (the
smallest recordable peak height).

In likeLTD, alleles that are not observed in any CSP replicate or any reference profile of an assumed
contributor are combined into a single allelic class. When the unprofiled contributors are assigned > 1
allele in this class, these are assumed to be distinct: unprofiled contributors are assumed not to share
any unobserved allele.

Parameter Distribution Mean SD
E[αl] N 0.013 0.010

log10(αl/E[αl]) N 0 0.300
D Γ 0.02 0.019
O Γ 0.02 0.019
δ e 0.02 0.020
σ e 100 0.010

Table 2: Penalties applied to the parameters of the peak-height model. Distributions: N=normal, Γ=gamma,
e=exponential. The degradation parameters δ have the same penalty for each contributor and for dropin.

In order to encourage the optimisation algorithm to search in realistic regions of the parameter space,
the penalty terms shown in Table 2 are imposed. Large values of δ and σ are penalised, while for both D
and O a zero value is excluded but a broad range of positive values is supported. Two separate penalties
on the αl are intended to allow flexibility for its mean while limiting its variance over loci. Incorporation
of these penalty terms into the likelihood function is analogous to imposing a prior distribution, but
our approach is not Bayesian: elimination of nuisance parameters is achieved via maximisation and not
integration, which is for example the approach adopted by STRmix, implemented using Markov chain
Monte Carlo.

The probability assigned to allelic position i, whether or not there is an observed above-threshold peak,
is computed as a gamma probability mass as described above. Denoting this probability a(l, r, g, i, σ),
the penalised likelihood is computed by multiplying over alleles and replicates, summing over genotype
allocations each multiplied by the product of genotype probabilities for the unprofiled contributors, and
then multiplying over loci including the penalty term:

∏

l∈L

πl

∑

g∈Gl

[ ∏

c∈C

Pr(Gg,c)
] ∏

r∈R

∏

i∈Il

a(l, r, g, i, θ) (4)

where Gg,c denotes the genotype allocated to c in g, πl is the combined penalty on the likelihood at
locus l given the values for αl, D, O, σ and the δ, and θ denotes all model parameters. (4) is then
maximised over these parameters. likeLTD uses a genetic algorithm DEoptim that simulates mutation,
recombination and selection on parameter vectors to search for the vector that maximises the penalised
likelihood (Mullen et al., 2011). Maximisation is performed separately under Hp and Hd and the LR is
the ratio of the maximised values.

3.2 Validation studies
Many validation checks for forensic DNA software have been proposed. We have previously proposed
using simulated or laboratory-generated replicate profiling runs (Steele et al., 2014a). It uses the fact
that the inverse match probability (IMP) gives an upper bound on the LR, and the bound should be
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# Cont # Samples Condition DNA mass (pg)

1
9 250 pg 250
9 62 pg 62
9 16 pg 16
9 4 pg 4

2 12 Maj/min 266 (250:16)
12 Equal 62 (31:31)

3 6 Unequal 328 (250:62:16)
6 Equal 93 (31:31:31)

Table 3: Laboratory protocol for generation of single-contributor and multi-contributor CSPs from 36 do-
nated DNA samples. DNA masses are given as a total, with individual contributions in brackets. These are
target values, realised values can vary.

closely approached in certain settings. Bright et al. (2015) suggest generating artificial mixtures based
on the assumptions of the model, to check that parameter estimates are consistent with those used to
generate the CSP. Taylor et al. (2015) propose checking that the mean LR for a given CSP over many
randomly-generated Q is close to the expected value of 1, noted by Alan Turing (Good, 1950). This is a
refinement of the false Q validation method of (Gill and Haned, 2013).

It remains the case that no one test can fully validate a model or its implementation in software. We
have therefore devised an extensive range of checks on likeLTD, which we now describe.

3.2.1 Simulated two-person mixtures
First, we compared the performance of a simplified version of the peak-height model with a discrete
model, also implemented in likeLTD, that classifies peaks as allelic/uncertain/non-allelic (Balding, 2013).
Comparisons were conducted when inferring the single-locus genotypes of two contributors to a CSP,
with varying mixture ratios. The contributor genotypes were both heterozygous, sharing one allele. The
expected peak height for the unshared allele of the first contributor was 600 RFU (no degradation),
and mixture ratios were considered ranging from 0.1 to 10. The following model simplifications were
introduced to aid interpretability of changes in genotype probabilities resulting from changes in mixture
ratio, without fundamentally altering the model. The stutter fraction was always 0.1, irrespective of
LUS. All observed peak heights were taken to be equal to the expected values, and those above tl = 50
RFU were recorded in the CSP. For the peak-height model, the expected heights El,r,g,i were calculated
assuming D, O, δ and λ all equal to zero, and S constant across alleles. Contributor doses, χc, were
assumed equal to the values used to generate the CSP and we fixed σ = 10. For the discrete model, all
allelic and non-allelic peaks were correctly designated as such in the data input. Dropout probabilities
were calculated using the model of Tvedebrink et al. (2009):

Pr(D|H) = exp(β0 + β1 logHT )
1 + exp(β0 + β1 logHT ) , (5)

where β1 = −4.35, as estimated by Tvedebrink et al., and β0 = 18.556 which is the mean of the locus
estimates reported in Tvedebrink et al. (2009). The combined doses for a peak HT are H1 and 2H1, for
an unshared heterozygous and homozygous allele of the first contributor respectively, and H1 + H2 for
a heterozygous allele shared by the two contributors. H1 and H2 are estimated from unshared alleles of
each contributor.

3.2.2 Laboratory-generated validation data
Cheek swab samples were collected from 36 volunteer donors. DNA was extracted using a PrepFiler
Express BTA™ Forensic DNA Extraction Kit and the Life Technologies Automate Express™ Instrument
as per the manufacturer’s recommendations.

Single-contributor and multi-contributor mock crime samples were created from 36 DNA samples as
shown in Table 3. These crime samples were amplified using the AmpF`STR® NGMSelect® PCR kit as
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# Contributors Condition Hypotheses Figure

2

Single Rep U1 + dropin 1(b), 3(a), 4(a), 4(b)
Multiple Reps U1 + dropin 3(a)
Minor dropin dropin 4(b)

3

Data fit K1 (250pg) + U1 2
Single Rep U1 + U2 3(b), 4(b)

Multiple Reps U1 + U2 3(b)
Minor dropin U1 + dropin 4(b)

Table 4: Hypothesis pairs evaluated for the CSPs generated from the mixtures in Tables 3 and 6. K and U
denote contributors with and without a reference profile available. To the contributors stated here, Q was
added under Hp and an unrelated individual X was added under Hd. For the “Minor dropin” conditions the
LR was evaluated for all true contributors other than the minor. For the “Data fit” condition Q was always
the 16pg contributor. For other conditions, each contributor was queried in turn.

Designation S D and O
Non-allelic x < 0.05 x < 0.05
Uncertain 0.05 ≤ x < 0.15 0.05 ≤ x < 0.1
Allelic x ≥ 0.15 x ≥ 0.1

Table 5: Interpretation rules for epg peaks in positions that could correspond to stutter (S), double-stutter
(D) or over-stutter (O). x is the ratio of heights of the possible stutter peak to the parent peak. These rules
are used to generate input data for discrete-model LRs computed to compare with the LRs generated by the
likeLTD peak-height model.

per the manufacturer’s recommendations on a Veriti® 96-Well Fast Thermal Cycler. The amplified PCR
products were size separated by capillary electrophoresis using an ABI 3130 Sequencer, with 1 µL of the
PCR product, 10 second injections and 3kV voltage. The results were analysed using GeneMapper® ID
v3.2 with a detection threshold tl = 20 RFU for all l ∈ L; all peaks above the detection threshold were
recorded.

For one of the three-contributor mixtures, we compared the observed peak heights with the probability
distributions generated under the model, in order to verify that the probability distributions are well
calibrated.

3.2.3 Comparison with discrete model
Next, we used the laboratory-generated data to compare the performance of the likeLTD peak-height
model with that of the discrete model. For multi-contributor CSPs (see Table 3), each contributor was
queried in turn, leading to 36, 48 and 36 evaluations for the single-, two- and three-contributor CSPs
respectively. To convert the laboratory-generated epgs into appropriate input data for the discrete model,
interpretation rules set out in Table 5 were used. If there were multiple possible designations, “non-allelic"
was adopted if it is one of the possibilities, otherwise “uncertain" is the default. For example, if the CSP
shows alleles 13, 14 and 15 with peak heights 800, 35 and 600 respectively, the 14 allele would be called
as non-allelic when considered as an O of the 13 allele (x = 0.044), but uncertain when considered as an
S of the 15 allele (x = 0.058), and so the final call would be non-allelic.

3.3 Replication
To mimic pre-extraction replication, the mixtures described in Table 3 were created multiple times, but
with DNA contributions of approximately x/n pg in each of n samples, successively for n = 2, 3 and 4
(Table 6). PCR amplification, capillary electrophoresis and genotype analysis were performed for each
replicate as described above.
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# Cont Condition Unsplit DNA mass (pg) # Samples # Reps Split DNA mass (pg)

2

Equal 62 (31:31)
4 2 31 (16:16)
4 3 21 (10:10)
4 4 16 (8:8)

Maj/min 266 (250:16)
4 2 133 (125:8)
4 3 89 (83:5)
4 4 67 (63:4)

3

Equal 93 (31:31:31)
2 2 47 (16:16:16)
2 3 31 (10:10:10)
2 4 23 (8:8:8)

Unequal 328 (250:62:16)
2 2 164 (125:31:8)
2 3 109 (83:21:5)
2 4 82 (63:16:4)

Table 6: Experimental design for investigating the relative merits of pre-extraction replication. Target DNA
masses are rounded to the nearest picogram (pg), and are given as a total, with individual contributions in
brackets.

Both the replicated and unreplicated two- and three-contributor CSPs (see Table 6) were evaluated
assuming each contributor as Q in turn, to investigate whether pre-extraction replication holds any
benefit over profiling a single sample. Next, we implemented the validity checks for a low-template DNA
LR algorithm that we previously proposed (Steele et al., 2014a): the two-contributor replicated CSPs
were evaluated with sequential addition of replicates, to check that the LR with the peak-height model
approaches, but does not exceed, the IMP.

We also used the replicate CSPs to assess the approach of the WoE towards the IMP as the number
of replicates increases (here, up to 4) as proposed in (Steele et al., 2014a).

3.4 Model extensions
3.4.1 Minor contributors modelled as dropin
The single-replicate, unequal two- and three-contributor CSPs were re-evaluated assuming one less con-
tributor to the CSP. For these analyses Q was never the minor contributor. Under the peak-height
model, any low peak not attributable to one of the hypothesised contributors will be explained as dropin.
Because of peak-height variability, the algorithm will often assign positive probability to several different
sets of peaks designated as dropin; note that likeLTD has no definitive classification of peaks as dropin
or non-dropin as all allelic peaks are hypothesised to have some contribution from dropin.

3.4.2 Linkage adjustment
Linkage can lead to non-independence of loci when the alternative to Q under Hd, say X, is a close
relative (other than parent or offspring). The number of loci used in DNA profiling kits has increased in
recent years, so that two loci on the same chromosome arises in many of these kits; specifically the 17-
locus system recently adopted in the UK has two pairs of linked loci: vWA and D12S391 on chromosome
12, and D2S1338 and D2S441 on chromosome 2. While it is possible to account fully for linkage and
population structure for each genotype allocation when calculating the LR (Bright et al., 2013a), the
full computation is complex and current practice is either to omit one of each pair of linked loci, which
tends to understate evidential strength if Q is indeed a contributor, or to ignore the linkage which tends
to overstate the evidence. We propose instead a simple adjustment to the LR:

LR′ = LR
Ωl

Ωu
(6)

where Ωl is the IMP assuming linkage (Bright et al., 2013a), and Ωu is the IMP ignoring linkage. The
result of our adjustment normally lies between the values resulting from the two current practices, and
should not be systematically biased towards either prosecution or defence.
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To verify these expectations, a three-contributor CSP was evaluated, with the 16 pg contributor as
Q, and the 250 pg contributor as K (reference profile available). The LR was computed 6 times, with
Hd specifying a sibling of Q, with:

1. No linkage adjustment
2. Removal of vWA and D2S441
3. Removal of vWA and D2S1338
4. Removal of D12S391 and D2S441
5. Removal of D12S391 and D2S1338
6. Linkage adjustment (6)

All likelihood evaluations were performed with likeLTD v6.1. Table 4 gives the hypothesis pairs evaluated
for each condition. All evaluations assumed FST= 0.03, tl = 20 for every locus l, a sampling adjustment
of 1, and a Caucasian population database for all unknown contributors (Steele and Balding, 2014; Steele
et al., 2014b).

4 Results
4.1 Model validation
4.1.1 Simulated two-person mixtures
Ideally an epg interpretation model would assign probability one to the correct genotype allocation for
the unknown contributors. The red dotted line in the left panel of Figure 1(a) shows that this is the case
for a wide range of mixture ratios for simplified, simulated CSPs with two unknowns. Correct genotype
inference is not possible for mixture ratios close to one, because there is no information to distinguish
the alleles of the two contributors, nor for mixture ratios close to zero because of allele dropout affecting
the minor contributor. Correct genotype inference is never possible for mixtures under a discrete model,
because by definition it uses no information that could distinguish the alleles of the two contributors.
The right panel of Figure 1(a) shows that the discrete model performs as well as can be expected: for
all but very small mixture ratios it assigns probability close to 1/12 for each of the 12 genotype pairs
consistent with three observed alleles, with deviations for low ratios arising because of dropout. However
even in the equal-contributions case (mixture ratio = 1), the peak-height model does better than the
discrete model because it can recognise which allele is represented twice among the two genotypes, and
so assigns equal probability to each of four genotype allocations, rather than 12 under the discrete model.

4.1.2 Laboratory data: model fit
For one of the three-contributor mixtures, evaluated assuming the major was a known contributor and
with the minor as the queried contributor (see Table 4, Data fit), we found that the proportion of
observed peak heights within the 95% probability interval computed under the peak-height model was
0.94, while the proportion within the inter-quartile range was 0.51 (Figure 2), indicating that the model
is well calibrated for this example.

4.1.3 Comparison with discrete model
Despite the superiority of the peak-height model in a simplified setting with no peak-height variability
(Figure 1(a)), when querying laboratory-generated two-equal-contributor low-template CSPs the WoE
supporting a true Hp appears on average no higher when computed under the peak-height model than
under a discrete model (Figure 1(b), red). In effect, the additional information potentially available from
peak heights is lost due to peak-height variability at the low template used here (31 pg per contributor).
Even the two red x in 1(b) that seem to indicate better performance of the peak-height model for
low-template profiles in fact have been verified by manual inspection to reflect unequal contributions,
apparently due to pipetting error.

When instead the Maj/min CSPs are queried, the peak-height model does perform better than the
discrete model (Figure 1(b), blue). In four cases the peak height IGR for the minor (crosses) supports
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Figure 1: Simulated two-person mixtures. (a) Probabilities assigned to possible genotype allocations for two
unknown contributors, one with DNA dose corresponding to 600 RFU, while the other has DNA dose = 600
× ratio, where the mixture ratio varies from 0.1 to 10 (x-axis, log10 scale). The left panel corresponds to a
simplified peak-height model while the right panel gives results for a discrete model. Each line corresponds
to an allocation of the pair of genotypes, the red dotted line denoting the correct allocation which has
probability close to one for most mixture ratios under the peak-height model. The true genotypes have
one allele in common and 12 possible ordered genotype pairs are consistent with three distinct alleles. The
discrete model assigns probability close to 1/12 to each of these for most of the range of ratios. (b) gives
the information gain ratio (WoE/log10(IMP)) for 12 two-contributor equal-contribution CSPs (red, 31 pg
for each contributor) and 12 two-contributor major/minor CSPs (blue, 16 pg minor, 250 pg major) using
both the peak height (x-axis) and discrete (y-axis) models. Both contributors to each CSP were queried in
separate calculations, with circles and crosses distinguishing the two contributors.
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Figure 2: Observed and fitted peak heights under Hd for a CSP assuming a 250 pg K and two unknown
contributors. Boxes show the central 50% (inter-quartile range) of the gamma distribution for each hypoth-
esised peak, whiskers represent the 95% equal-tailed probability interval and red bars show observed peak
heights. The y-axes gives peak height in RFU, while each boxplot corresponds to an allele.

Hp, while the discrete IGR supports Hd even though Hp is true. However, the peak-height IGR for the
major (blue circles) is almost always ≈ 1.0 (the two exceptions have been verified by manual inspection
to have a lower than expected contribution from the major, once again due to pipetting variability). This
means that the discrepancy in DNA mass between the two contributors is so large that the genotype of
the major can be confidently inferred by the peak-height model, which in practice implies that it can also
be inferred manually. Therefore the superior performance of peak-height over discrete model for these
Maj/min CSPs is of limited benefit, since in practice the discrete model may be applied after manually
inferring the genotype of the major. However, even when treating the major contributor as known, there
remains an advantage of the peak-height model (results not shown) largely because it has some ability
to distinguish dropin peaks from minor contributor alleles. Further, manual deconvolution of a major is
often problematic in practice because it is hard to delineate exactly the circumstances under which this
can be done with high confidence.

4.2 Replication
When a sample containing x pg of DNA is split into n replicates, each with x/n pg DNA, the IGR for
multiple replicates is on average about the same as for a single replicate for both two- (Figure 3(a)) and
three-contributor CSPs (Figure 3(b)). These results show that with efficient statistical analysis splitting
a sample to achieve replication does not lose information. We discuss potential advantages below.

If replication is “free" in the sense of not exhausting the supply of DNA then it is potentially always
advantageous. However, there are costs involved and a declining return from additional replicates. Figure
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Figure 3: Information gain ratio (IGR) for (a) 24 two-contributor CSPs and (b) 12 three-contributor CSPs
using a single replicate (x-axis) or splitting the sample into n replicates (y-axis). The CSPs had either equal
contributions (red, 31 pg for each contributor) or unequal contributions (blue, 16 pg minor, 64 pg middle
for three contributor only, 250 pg major). The plotted values indicate the number of replicates, with crosses
indicating mean values for each colour. Each of the contributors was queried in turn, leading to 48 and 36
data points.
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Figure 4: Information gain ratio (IGR) for (a) twelve major/minor two-contributor CSPs with sequential
addition of replicates, dashed and solid lines correspond to minor and major contributor, respectively; (b) 12
two- and/or 6 three-contributor CSPs (blue and red respectively) treating the minor contributor as dropin
(x-axis) and as an additional contributor (y-axis).

4(a) shows the increase in IGR with sequential addition of replicates from major/minor mixtures. When
querying the major contributor (solid blue lines), the IGR reaches 1.0 for nine out of 12 CSPs, and never
exceeds 1.0.

4.3 Model extensions
4.3.1 Minor contributors modelled as dropin
The IGR when treating all contributors to an unequal-contributions mixture as unknowns under Hd is
approximately equal to that with one fewer unknown contributor underHd so that the minor contribution
is modelled as dropin (Figure 4(b)). Because it can be difficult to decide whether additional low-level
peaks in an epg should be modelled as dropin or as an additional contributor, it is important to establish
that the result of the analysis is little affected by this choice. Moreover there can be computational
advantages to treating as dropin any low-level contributors that are not the contributor of interest.

4.3.2 Adjustment for linkage
When the same three-contributor CSP as in Figure 2 is evaluated, but now proposing as X a sibling of
Q, the LR with our proposed linkage adjustment lies, as predicted, between the no-adjustment LRs with
and without removal of one locus from each linked pair (Table 7). The IMP is also affected by linkage
adjustment and locus removal, and its values satisfy the same ordering as the LR. Note that ignoring
linkage tends to be unfavourable to defendants, while with locus removal the LR varies substantially
with the choice of loci to be removed. So both standard practices have serious defects which are avoided
by our simple adjustment.
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Linkage
adjustment (6) Loci removed WoE log10(IMP)

No none 0 7.3
Yes none -0.2 7.1
No vWA and D2S441 -1.2 6.4
No vWA and D2S1338 -0.5 6.4
No D12S391 and D2S441 -1.8 6.4
No D12S391 and D2S1338 -0.8 6.3

Table 7: WoE (Weight of Evidence = log10(LR)) and log10(IMP) (IMP = Inverse Match Probability) for
a three-contributor CSP with and without our proposed linkage adjustment (6), in the latter case using all
loci, and with all possible combinations of removing one of each pair of linked loci. Here, Hd specifies a
brother of Q as the alternative source of the DNA, which is false in this example but because Q is a low-level
minor contributor (16 pg), the results show that there is no information to distinguish Q from a sibling (WoE
is zero or weakly negative).

5 Discussion
We have presented a novel statistical model for evaluation of complex (low-template and/or mixed)
DNA profiles using peak-height information, implemented in open-source software likeLTD. We have
investigated its performance using a series of validation tests, including comparison with an established
discrete model, and we have used it to investigate the advantages of pre-extraction replication. We
further proposed two useful extensions of the model, to deal with low-level contributors and linked loci.

Our peak-height model incorporates a number of important features lacking from comparable software
(Table 1). These include modelling both double- and over-stutter. Over-stutter is commonly seen at
the trinucleotide locus D22, now a part of the DNA17 set of loci routinely used in the UK, while
double-stutter is sporadically observed across all loci. If these phenomena are not modelled, it may be
necessary to increase the detection threshold, which risks losing minor peaks of interest, or else explain
any observations as dropin, yet this feature is not incorporated in dropin models. likeLTD is the only
software that models a contribution from dropin at every allelic position, whether or not a peak is
observed, which reflects reasonable intuition that if dropin is feasible it can potentially contribute to
any observed peak. The likeLTD runtime for the 48 two-contributor single-replicate evaluations ranged
from 7 to 18 minutes, while the 36 three-contributor single-replicate evaluations ranged from 18 to 200
minutes.

Regarding the validation tests, first we showed that the peak-height model performs well in inferring
the genotypes of the two contributors to each of 24 simulated two-person mixtures (Figure 1). Next, we
verified that probability intervals for peak heights under the model fitted to a three-contributor CSP are
well calibrated (Figure 2). We further verified that the WoE increases towards the IMP with additional
replicates but does not exceed the IMP (Figure 4(a)), thus implementing for the peak-height model a
validity check that we previously applied to a discrete model (Steele et al., 2014a).

In our equal-contributor CSPs we found little benefit of a peak-height model over a discrete model,
for either two or three contributors. This seems counter-intuitive because peak heights are potentially
informative about shared alleles (either homozygosity or shared across contributors) and can also deal
better with possible stutter than a discrete model, but against this is the high variability of peak heights
for low DNA template. There was a noticeable gain in information for the unequal-contributor CSPs
(Figure 1), supporting the results of Bright et al. (2015) who also found a gain in information from peak
heights for unequal contributors but not for equal contributors.

We found that when analysed with our peak-height model, replication on average entails no loss of
information even when it requires splitting a low-template sample (Figure 3), and there may be a small
overall gain in information. Replication implies additional profiling costs, but it may provide additional
reassurance to a court and it can guard against failure of a profiling run. Using the LRmix discrete
model Benschop et al. (2015) found that pre-extraction splitting a sample into four subsamples for PCR
and subsequent profiling provided additional information to identify the major contributor but led to a
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substantial loss of information when the minor contributor was queried, due to high levels of drop-out
and also masking. This contrasts with our finding of no systematic gain or loss of information due to
replication for either contributor which may be due to our use of a peak-height model and also our low
detection threshold.

Thanks to the novel dropin model of likeLTD, which is conceptually simple yet more realistic than
other dropin models, we showed that it can be a valid strategy to reduce computational complexity
by modelling as dropin any low-level contributors not of interest to the investigation (Figure 4(b)).
Conceptually, dropin is modelled like a shower of alleles that fall in proportion to population frequencies.
This could be a valid model for any contributor but it does not permit inference of the genotypes of
individual contributors, which is why it is only appropriate for low-level contributors not including the
contributor of interest. The fact that hypotheses contrasted in an LR specify the number of contributors,
whereas this is often unknown and can be difficult to infer (Manabe et al., 2013; Haned et al., 2011), is
sometimes used as a criticism of the use of LRs as a measure of evidential weight (Buckleton and Curran,
2008). However if multiple low-level contributors can be modelled as dropin it is unnecessary to specify
the number of contributors exactly.

Not adjusting for linked loci tends to favour prosecutions, while the degree that removing one locus
from linked pairs favours defences can depends on the loci chosen for removal. Our proposed adjust-
ment avoids both of these problems, is conceptually appealing and easy to compute, avoiding exact full
computation of linked LRs (Bright et al., 2013a; Dørum et al., 2015). We showed that our adjustment
behaves as expected in an example (6), returning an LR between that with no adjustment and those
with removal of linked loci (Table 7).

Inference for complex DNA profiles has advanced impressively in recent years, from a situation prior
to about 2010 when such profiles were regularly being presented in court without valid evaluation tech-
niques being available, to the current availability of multiple models and software offering a range of
modelling options. This has increasingly allowed minuscule, mixed and degraded samples to be pre-
sented in court accompanied by robust and meaningful measures of evidential weight. We hope that this
will render obsolete the retrograde Dlugosz judgment that permitted in the courts of England and Wales
subjective, qualitative assessments of complex evidence based only on an expert’s experience (Cham-
pod, 2013). However there remains room for further progress in understanding and reducing differences
among the different models, although preliminary indications suggest that such differences are rarely if
ever important in practice.
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