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Enhancements in sensitivity now allow DNA profiles to be ob-
tained from only tens of picograms of DNA, corresponding to a
few cells, even for samples subject to degradation from environ-
mental exposure. However, low-template DNA (LTDNA) profiles
are subject to stochastic effects, such as “dropout” and “dropin” of
alleles, and highly variable stutter peak heights. Although the sen-
sitivity of the newly developed methods is highly appealing to
crime investigators, courts are concerned about the reliability of
the underlying science. High-profile cases relying on LTDNA evi-
dence have collapsed amid controversy, including the case of Hoey
in the United Kingdom and the case of Knox and Sollecito in Italy.
I argue that rather than the reliability of the science, courts and
commentators should focus on the validity of the statistical meth-
ods of evaluation of the evidence. Even noisy DNA evidence can be
more powerful than many traditional types of evidence, and it can
be helpful to a court as long as its strength is not overstated. There
have been serious shortcomings in statistical methods for the eval-
uation of LTDNA profile evidence, however. Here, I propose a
method that allows for multiple replicates with different rates of
dropout, sporadic dropins, different amounts of DNA from differ-
ent contributors, relatedness of suspected and alternate contrib-
utors, “uncertain” allele designations, and degradation. R code
implementing the method is open source, facilitating wide scru-
tiny. I illustrate its good performance using real cases and simu-
lated crime scene profiles.
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Reliability of Low-Template DNA Profiling

Problems with the courtroom use of low-template DNA
(LTDNA) profiles were brought into sharp focus in the

United Kingdom in 2007, with the collapse of a trial arising from
the Omagh bombing in Northern Ireland in 1998. This crime
killed 29 people and injured many more; consequently, early
termination of the trial and acquittal of the defendant attracted
widespread adverse publicity. The judge gave several reasons,
but it was his critical appraisal of the LTDNA evidence that
captured headlines. In response to the controversy, a report re-
viewing LTDNA evidence (1) was commissioned by the UK
Forensic Science Regulator. The report found the underlying
science to be “sound” and LTDNA profiling to be “fit for pur-
pose,” although admitting that there was lack of agreement “on
how LTDNA profiles are to be interpreted.”
I suggest that these comments are somewhat contradictory:

Without valid methods of assessing evidential strength, a tech-
nique cannot be fit for purpose in the criminal justice system. Fig. 1
shows part of the electropherogram (epg) giving the results
from replicate LTDNA profiling runs in a crime investigation.
The two epgs show substantial similarity yet also important dif-
ferences: For example, the 17 allele at locus D19 is detected in
Fig. 1 (Left) but not in Fig. 1 (Right), yet the reverse is true for
the 11 allele. Is a technology that produces such variable results
reliable? This is often asked by legal commentators, but the term
“reliable” is too vague for the question to be useful. What is
evident is that there is substantial, but imperfect, information in

these results about the genotypes of individuals contributing
DNA to the sample. The important question is whether or not
we can extract that information with enough statistical efficiency
for it to be useful while avoiding overstatement of evidential
strength. Fortunately, progress has been made on this front since
publication of the report by Caddy et al. (1), and I propose here
a methodology for robust and efficient analyses of LTDNA ev-
idence that is incorporated in a freely available suite of R
functions.

Case of Knox and Sollecito
Table 1 shows three interpretations of the DNA evidence at five
loci from exhibit 165B of the trial in Perugia, Italy, in 2009. The
exhibit includes the clasp of a bra, attached to some apparently
blood-stained fabric, that was found near the murdered woman,
Meredith Kercher. The report (2), written by two academic
experts from the Sapienza Università di Roma, was highly critical
of the prosecution’s DNA evidence at trial and led to the con-
victions of Amanda Knox and Raffaele Sollecito being overturned
on appeal. Here, I will use “interpretation” for the process of
deciding which epg peaks are allelic and “evaluation” for the
calculation of numerical measures of evidential weight for an
interpretation.
The interpretation by the Italian Scientific Police presented at

trial identified exactly the alleles of the victim and one of the
coaccused, Sollecito, in the DNA profiling results. Using meth-
ods described below, I computed a weight of evidence (WoE) in
favor of the contributors of DNA being Kercher and Sollecito,
rather than Kercher and an unknown man, of >15 bans. The ban
is the unit of WoE introduced by Alan Turing (3): x bans means
log10ðLRÞ= x, where LR is the likelihood ratio, such that 6 bans
means an LR of 1 million. In reviewing the evidence, Vecchiotti
and Conti (2) agreed with the alleles originally identified but also
reported many additional epg peaks. They cited recommenda-
tion 6 of Gill et al. (4) in concluding that all peaks in stutter
positions should be regarded as allelic. Of the 24 additional
peaks identified by Vecchiotti and Conti (2), of which 6 had
heights below the threshold of 50 relative fluorescence units, 9
are included in the profile of the other codefendant, Knox,
providing apparent support for the presence of DNA from her.
However, four of her alleles were not observed, including two
homozygotes, which are less prone to dropout.
These interpretations pose problems for standard methods of

evidence evaluation because of the alleles not attributable to
any of the profiled individuals, uncertainty over whether or not
Knox is a contributor, and the need to allow for the possibility that
subthreshold peaks may be allelic. The number of above-threshold
alleles recorded at any locus is six or less, which implies three
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or more contributors of DNA. However, if Knox is assumed to
be a contributor, the alleles not attributable to her still imply
three or more other contributors. I first compare these prose-
cution (Hp) and defence (Hd) hypotheses for the contributors
of DNA:

Hp: Kercher, Knox, Sollecito, and one unknown individual

Hd: Kercher, Knox, and two unknown individuals

I introduce an innovation to likelihood-based analyses to allow
for an “uncertain” allele designation. In previous formulations
(5–10), the likelihood at a locus in a profiling run is the product
over all allelic positions in the epg of one of four possible terms,
according to whether or not the corresponding allele is repre-
sented in the crime scene profile (CSP) and whether or not it is
included in the profiles of any of the hypothesized contributors
(Materials and Methods). I introduce here a fifth possibility cor-
responding to an absence of information about whether the al-
lele is present, irrespective of whether or not it is included in the
profile of a hypothesized contributor. An assumption of no in-
formation is appropriate if there is substantial uncertainty, for
example, due to borderline peak height or the possibility that
a peak is due to stutter or other artifact.
Using this uncertain designation for the six subthreshold al-

leles, the estimated dropout rate for Knox is close to 100%. A
separate analysis with her as the queried contributor returned an
LR < 1, also favoring a conclusion of no DNA from her. I reran
the analysis excluding Knox from both Hp and Hd, and obtained
an LR in favor of Hp of 42 million (WoE = 7.6 bans). Thus,
although the additional alleles have, by providing evidence for an
additional contributor, weakened the evidence implicating Sol-
lecito by a massive 8 bans, this evidence nevertheless remains
strong. Moreover, Gill et al. (4) did not consider uncertain

designations for peaks that are potentially due to stutter. After
reclassifying as uncertain all peaks below 15% of the height at
one extra repeat unit, a common stutter guideline (4), there
remain four alleles not attributable to either Sollecito or Kercher
and the WoE is increased to 10.7 bans.
Note that I cannot address here issues of how the DNA came

to be in the exhibit: Possible contamination was an issue in the
trial and appeal. I only consider whether there is DNA from
Sollecito for which the evidence remains very strong after
allowing for the additional alleles identified by Vecchiotti and
Conti (2) and the possibility that apparent stutters are allelic.

LikeLTD Software
The probability model used to calculate these LRs is imple-
mented in the likeLTD (likelihoods for LTDNA profiles) soft-
ware, which computes likelihoods for hypotheses, such as Hp and
Hd, that specify the contributors to a sample of DNA, some or all
of whom may have contributed low levels of possibly de-
graded DNA. For mixed-source profiles, epg peak heights are
potentially informative beyond simply indicating whether or not
an allele is present because they can reflect the amount of DNA,
which may differ among contributors. However, this information
can be difficult to exploit because peak heights for LTDNA are
highly variable and this variability can be sensitive to the details
of the profiling protocol used. The data input into likeLTD are
the reference profiles, together with the CSP, coded as present/
uncertain/absent at each allelic position in each replicate. Peak
height information is used by the forensic scientist when deciding
these classifications, for example, when assessing whether a peak
in a stutter position should be regarded as allelic or uncertain.
The full set of present/uncertain/absent indicators, combined
over alleles, loci, and replicates, is highly informative about the
amount of DNA from different contributors, and hence about
dropout probabilities, permitting powerful and robust evalua-
tions of evidential weight without the need to use sensitive peak
height information.
In this article, I describe the probability model underlying

likeLTD and assess its performance on real and artificial CSPs. I
show that likeLTD provides a good solution to the problem of
evaluating LTDNA profiles with up to two unprofiled contrib-
utors in addition to the queried contributor. The DNA evidence
for Knox and Sollecito was criticized by Vecchiotti and Conti (2)
because only a single DNA profiling run was performed. For any
“noisy” scientific process, replicate analyses are desirable. This is
broadly true for LTDNA evidence, but replication does have the
potential disadvantage of dividing an already minuscule sample,
which may adversely affect the results (11). As long as the noise
is adequately modeled, which is possible by combining in-
formation over alleles and loci, replication is not a prerequisite for
valid evaluation of the evidence. In Table 1, the extra uncertainty
due to lack of replication has led to a much lower WoE than
might have been realized had replicate PCR assays been suc-
cessfully analyzed. In other words, a penalty for lack of replication

Fig. 1. Illustrative epgs from a swab of a handgun magazine. Two replicates are shown at three loci: D19, THO1, and FGA. Note the different y-axis scales,
chosen automatically, in units of relative fluorescence units; the x axis shows fragment length in base pairs. Allele labels in boxes are assigned automatically
but can be overridden by a forensic expert taking into account factors like peak morphology and potential stutter. Some manual annotations are shown,
indicating subthreshold peaks in ( ) as well as possible artifacts, such as stutter.

Table 1. Allele calls at 5 of 15 loci in the DNA profile obtained
from exhibit 165B (case of Knox and Sollecito)

Locus Trial* Appeal† New‡

D8 13, 15, 16 11, 12, 13, 14, 15, 16 11, 12, 13, 14, 15, 16
D21 30, 32.2, 33.2 29, 30, 32.2, 33.2 29, 30, 32.2, 33.2
D7 8, 11 8, 10, 11 8, 10, 11
CSF 10, 12 10, 11, 12 10, 11, 12
D3 14, 16, 17, 18 14, 15, 16, 17, 18 14, 15, 16, 17, 18
LR§ 7 × 1015 (15.8 bans) 4 × 107 (7.6 bans) 5 × 1010 (10.7 bans)

*Alleles reported at the original trial.
†Alleles identified by Vecchiotti and Conti (2); underlined alleles have peak
heights <50 relative fluorescent units.
‡Apparent stutters are also underlined (peaks with a height <15% of the
peak height at one extra repeat unit).
§LR for Sollecito to be a contributor of DNA, given that Kercher is
a contributor, based on all 15 loci [x bans means log10ðLRÞ= x].
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arises automatically in likelihoods that model stochastic phe-
nomena, such as dropin or dropout.

Results
Hammer Case. The profile data in Table 2, consisting of two CSP
replicates and reference profiles from a queried contributor, Q,
and two victims, K1 and K2, are taken from Table 2 of a study by
Gill et al. (7), which did not consider the possibility of uncertain
allele calls. There is some variability across the two replicates,
a symptom of low-template and/or degraded DNA, such that 12
alleles are observed in only one of the two replicates. There
are a total of 6 alleles, ≤2 per locus and all of them unreplicated,
that are not from Q, K1, or K2. This suggests a comparison of
the following two hypotheses for the contributors of DNA to
the sample:

H′p: Q + K1 + K2 + U1;

H′d : X + K1 + K2 + U1;

where X and U1 are both unprofiled individuals. The distinction
between them is that X is the alternative to Q; thus, the ethnic
backgrounds of X and Q, and the degree of relatedness between
them, can have important impacts on the WoE, whereas U1
plays the same role under both H′p and H′d.
Every CSP allele attributable to K2 could also come from K1

or Q (Table 2); thus, under H′p, there is no evidence for DNA
from K2. However, under H′d, the DNA of Q is not present,
leaving three CSP alleles that can be attributed to K2 but not to
K1. Nevertheless, likeLTD estimates 100% dropout of the alleles
of K2 in both replicates under both hypotheses. This is because
the three alleles attributable to K2 under H′d are all replicated,
whereas seven other alleles of K2 do not appear at all, indicating
very high dropout; thus, likeLTD finds that attribution of the three
alleles to K2 is unlikely. Although K2 cannot be excluded from
contributing any DNA to the sample, these results indicate that
including K2 in the analysis brings no explanatory power and so
has a negligible impact on theWoE implicating Q as a contributor.
After removing K2 fromH′p andH′d, theWoE is 10.6 (SD= 0.10).

H′p is favored over H′d at every locus except D18 (−0.6 bans); the

most incriminating locus (2.5 bans) was D19, where Q has two
rare alleles that appeared in both CSP replicates.
The WoE of 10.6 bans computed here is stronger than that

obtained by Gill et al. (the maximum of the blue solid curve in
figure 1 of ref. 7 is just over 9 bans). The extra discrimination
power of likeLTD results from its extra flexibility, for exam-
ple, allowing different dropout rates per replicate and per
contributor.
I recoded eight CSP alleles as uncertain and observed differing

effects at individual loci, depending, for example, on whether the
uncertain allele is in the reference profile of Q. The resulting
changes in the computed WoE match intuition; for example:

Locus D16, CSPa, allele 11: This is an allele of Q not shared
with K1; thus, changing its status from present to uncertain
reduces the WoE, but only slightly, because the allele is called
in CSPb. The single-locus WoE decreases from 1.17 to 1.14
bans (Table 2, column 4).

Locus D21, CSPb, alleles 29 and 30: These are both alleles of
K1 not shared with Q, and they are not called as alleles in
CSPa. Thus, changing the allele call to uncertain has a bigger
impact, although still modest. The WoE is increased by just
over a deciban because of the reduction in possible genotypes
for X.

There are also indirect effects on all loci, because the changes
in allele calls have an impact on the support for dropout pa-
rameter values. Overall, the evidence is weakened but remains
very strong at 9.3 bans (Table 2, bottom row).

Simulated Profiles.Detailed results for a range of tests of likeLTD
on DNA profiles subject to a number of modifications, such as
artificial dropin and dropout, as well as modifications to the
modeling assumptions underlying likeLTD, are provided in SI
Text. I summarize here the main conclusions.
For a one-contributor, two-replicate CSP with no dropin or

dropout (SI Text, section S2), likeLTD returns almost exactly the
same WoE as the standard match probability formula whether or
not dropin is explicitly modeled (because the dropin rate is es-
timated at zero) and whether X is unrelated to Q or is a brother
of Q. If I wrongly hypothesize two contributors rather than one,
the dropout rate for the additional contributor is estimated at
100% and the WoE is unaffected. If the CSP is modified, the
WoE at individual loci changes in line with expectations and the
overall WoE is reduced. For a CSP affected by four dropouts and
two dropins over the two replicates, repeat likeLTD runs with
a search length (n) of 1,000 simulated annealing iterations
(Materials and Methods, Parameter Estimation) give WoE values
with a SD less than half of a deciban (about 11% on the LR
scale). For n = 5,000 and n = 10,000, the WoE is precise to <1%
on the LR scale. When the alleged contributor Q was chosen at
random, such that the prosecution hypothesis was false, the drop-
out rate for the noncontributor Q was estimated to be very high
and, consequently, the WoE was usually negative and always low.
Proceeding to a two-contributor CSP (SI Text, section S3),

with neither contributor known, a series of experiments in-
troducing 50% dropout to one or both contributors, as well as
uncertain allele calls due to stutter, gave satisfactory results in
that parameter estimates and the WoE varied in accord with
intuition. With three unknown contributors (SI Text, section S4),
the larger number of parameters implies less precision in eval-
uating the WoE. With n = 1,000 simulated annealing iterations,
the overall WoE has an SD of 0.4 bans (a factor of 2.5 on the LR
scale), which is reduced to 0.24 bans (a factor of 1.7 on the LR
scale) and 0.03 bans (about 6%) for n = 5,000 and n = 10,000,
respectively. Taking a different three-contributor CSP, this time
with one contributor a known and profiled individual, I in-
vestigated (SI Text, section S5) high and low extremes for the
degradation parameters, the variance of the locus-specific
parameters, and the dropout model power parameter. The WoE
was relatively stable under these extreme perturbations, varying

Table 2. Hammer case DNA profiles and results from two
analyses

Locus D3 D16 D2 D8 D21

CSPa* 14 11u, 13 20, 23 11u, 12 28
16 14 24, 25 13, 15 31

CSPb 14 11, 13 20, 24 11, 12 28, 29u, 30u

16 14 25 13, 15u 31, 31.2
Q† 14, 16 11, 14 24, 25 12, 13 28, 31
K1 16, 16 13, 13 20, 20 11, 15 29, 30
K2 15, 17 12, 13 18, 25 11, 13 29, 30
Other‡ 23 31.2
WoE§, bans
Mean (SD) 1.23 (0.057) 1.17 (0.033) 0.91 (0.084) 0.88 (0.029) 1.48 (0.14)
unc{ 1.10 1.14 0.95 0.94 1.59

*The crime scene DNA sample was profiled in duplicate (CSPa and CSPb).
Results from 5 of 10 loci are shown.
†The profiles of the two uncontested possible contributors of DNA, K1 and
K2, and the queried contributor, Q, are shown using the notations: repli-
cated alleles, unreplicated alleles, and unobserved alleles .
‡CSP alleles not attributable to any of Q, K1, or K2.
§WoE for Q to be a contributor, given that K1 and one unprofiled individual
are also contributors. The mean 10-locus WoE from 25 likeLTD runs is 10.6
bans (SD = 0.10).
{Mean WoE based on 10 likeLTD runs when eight alleles were reclassified as
“uncertain,” of which five were at the displayed loci and are indicated with u.
The mean 10-locus WoE is 9.3 bans (SD = 0.15).
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in the range of 10.3–10.7 bans, compared with a standard analysis
WoE of 10.6 bans.

Discussion
There is no “gold standard” test of an LR calculation for
LTDNA profiles. Likelihoods reflect uncertainty, and even when
the profiles of the true contributors are known in an artificial
simulation, this does not tell us what is the appropriate level of
uncertainty justified by a given observation affected by stochastic
phenomena. Likelihoods depend on modeling assumptions, and
there can be no “true” statistical model for a phenomenon as
complex as an LTDNA profile.
I have shown here good performance of likeLTD in analyzing

a wide range of crime scene DNA profiles involving complex
mixtures, uncertain allele designations, dropin and dropout,
degradation, stutter, and relatedness of alternative contributors.
It behaves consistently over replicate analyses and agrees with
well-established formulas in simple settings. The parameter
estimates and WoE change in a coherent and interpretable
manner under artificial modifications of the CSPs, and they are
robust to major modifications of the modeling assumptions. For
n = 5,000 iterations of the simulated annealing algorithm, the
reported WoE values are reasonably precise when the hypothe-
ses involve both U1 and U2 (SD of about 0.25 bans) and very
precise when U2 is not required.
The analysis of LTDNA profiles embodied in likeLTD has

elements in common with existing methods (6–10, 12, 13). It goes
beyond these methods by eliminating nuisance parameters au-
tomatically via maximization of penalized likelihoods, avoiding
the use of external calibration data specific to the profiling
protocol used, as required by other methods (9). Even with ex-
tensive calibration data, estimation of dropout and dropin rates
for the specific conditions of a crime sample cannot be precise,
but precise estimates are not required: “Best fit” (in the sense of
maximum penalized likelihood) values under each of the com-
peting hypotheses provide a fair evaluation of the WoE. To
achieve this, likeLTD adopts a multidose dropout model (14–16)
that uses information across all replicates, loci, and contributors.
The model underlying likeLTD is highly flexible, allowing both
amounts of DNA and level of degradation to vary over con-
tributors, as well as locus- and replicate-specific dropout rates. In
particular, the contribution of DNA from different individuals is
estimated and can be zero, such that additional profiled or
unprofiled contributors can be proposed with little error arising
if, in fact, there is no DNA from those individuals.
As well as providing strong WoE in favor of true contributors

in simulation experiments, I showed in examples that likeLTD
identified no support for the presence of DNA even when there
superficially appeared to be some support and that the WoE
declined appropriately as dropins and dropouts were introduced
or allele calls were altered to uncertain.
The problem of how to make a numerical expression of the

WoE meaningful to judges or jurors is common to all evaluations
of complex DNA evidence. The problem is not insurmountable,
and illustrative examples can be helpful (17).
An early “consensus” method approach to the analysis of

LTDNA profiles took account only of alleles that appear in both
of two DNA profiling replicates (12). This method is often
claimed to be conservative, but this is not necessarily the case
because it allows alleles that are inconvenient for the prosecution
case to be “swept under the carpet.” The analysis proposed here
makes use of all the results in every DNA profiling run. The
consensus method served a useful purpose when few alternative
approaches for the analysis of LTDNA profiles were available,
but it is no longer best practice.
Methods of analysis that directly use epg peak height in-

formation have been developed (18, 19), but software is not
currently freely available. These have potential advantages over
the method proposed here, in which peak heights are used to
classify every allele as present/uncertain/absent in each replicate.
However, peak heights can be highly variable, and their statistical

properties can depend sensitively on details of the experimental
protocol. Thus, our freely available R code likeLTD may remain
useful as a robust and efficient approach to the analysis of
LTDNA profiles, even if peak height-based methods can be
more statistically efficient, given relevant calibration data.
Previous versions of likeLTD have already been used in many
criminal investigations, with results presented as evidence in UK
and US courts (20).

Materials and Methods
Consider a single crime stain that may have been profiledmultiple times from
replicate PCR assays of the sample. Forensic DNA profiling predominantly
assays autosomal short tandem repeat (STR) loci, using technology in which
an allele in the profiled sample is represented by a peak in an epg (5), such as
those shown in Fig. 1.

I assume that a reference profile is available for a queried contributor (Q)
and the goal is to evaluate the LR for two competing hypotheses, one in-
cluding Q as a contributor (the “prosecution hypothesis,” Hp), whereas the
“defence hypothesis,” Hd , has an unprofiled individual X in place of Q. Both
hypotheses may include additional unprofiled contributors [in practice, I can
handle up to two (U1 and U2)], as well as profiled possible contributors, for
example, the victim or a bystander (K1, K2,. . .). The contribution of DNA
from each proposed contributor is estimated, and this estimate can be zero,
such that including an individual in Hp or Hd does not imply that the in-
dividual contributed DNA to the sample.

The LR can depend on, for example, the assumed ethnicity of X and his/her
relatedness to Q (the more genetically similar X is to Q, the smaller is the LR).
The likeLTD software program allows close relatedness of X to Q, specified
with two relatedness coefficients, whereas all other hypothesized contrib-
utors must be mutually unrelated and unrelated to X and Q. In addition,
remote shared ancestry (“coancestry”) of X with Q is modeled using the
population genetics parameter FST (17). Typically, in US forensic practice, FST
(also called θ) is only used to model intraindividual genetic correlations (i.e.,
excess homozygosity) (9). However, intraindividual correlations are of little
relevance to evidential weight. Only between-individual correlations matter
in practice, and failing to model them gives WoE values that are biased
against defendants. This deficiency affects some alternative methods for
analyzing DNA profiles. Because the relatedness coefficients and FST account
for the positive correlations across loci due to shared ancestry of X and Q, it
is reasonable to compute full-profile LRs by multiplication of single-locus
LRs, which is standard practice in the assessment of DNA profile evidence (5).
I thus focus below on the single-locus case.

Unless otherwise stated, all analyses reported here use n = 5,000 iterations
of the simulated annealing algorithm within likeLTD. The allele frequencies
from a standard database of ∼200 UK Caucasians have undergone sampling
and FST adjustments as described in SI Text, section S2.

Single-Locus LR with Dropout. Consider first a single profiling run, with
a single contributor who is Q under Hp and X under Hd . If Q ≡ AB, where “≡”
denotes “has genotype,” but the CSP shows only A and low epg peak
heights suggest that dropout is possible, then the possibility that B has
dropped out must be considered. Under a standard model (8, 10), the LR can
be written as

Dð1−DÞ
p2
Að1−D2Þ+ 2pAð1−pAÞDð1−DÞ

; [1]

where D and D2 denote the probabilities of dropout for heterozygote
and homozygote alleles, respectively. The numerator is the probability
that the B allele of Q has dropped out (D), whereas the A allele has not (1 −
D). In the denominator, either X is AA and there has been no dropout (first
term) or (second term) X is heterozygous but the non-A allele has dropped
out. Logically, D in the numerator of the LR is different from D in the de-
nominator; however, typically similar values are supported under both
hypotheses, and they are often taken to be equal for illustrative calcu-
lations (7).

Effect of an Uncertain Allele Designation. If I now assume CSP = A[B], where []
denotes an uncertain allele designation, and, again, Q ≡ AB, the LR becomes

1−D
p2
Að1−D2Þ+ 2pApBð1−DÞ+ 2pAð1−pA −pBÞDð1−DÞ: [2]

In the numerator, I know that Q’s A allele has not dropped out (1 − D) but
not whether the B allele has dropped out. In the denominator, the three
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terms correspond to X ≡ AA, AB, and AZ, respectively, where Z is any allele
other than A or B.

Fig. 2 (solid curves) shows LRs as functions of D for a locus with
pA =pB = 0:1 (after adjustment). As expected, the LR for CSP = A[B] (Fig. 2,
red curve) is always intermediate between those for CSP = AB (Fig. 2, black)
and CSP = A (Fig. 2, green). When D is high, the red and green curves in Fig. 2
are similar because in the presence of high dropout, both an uncertain
designation and an absent designation for B convey little information about
whether or not X has a B allele. However, when D is small, the two LRs differ
substantially because CSP = A is inconsistent with X ≡ AB, whereas CSP = A
[B] is consistent with both X ≡ AA and X ≡ AB.

Next, consider the LRs when there is a second replicate that gives A[B] in
each case (Fig. 2, dashed curves). I assume the same D for both replicates.
When CSP = AB + A[B], I must have X ≡ AB (I ignore dropin here, as discussed
below). When CSP = A + A[B], the LR is

Dð1−DÞ2
p2
Að1−D2Þ2 + 2pApBDð1−DÞ2 + 2pAð1−pA −pBÞD2ð1−DÞ2

;

whereas for CSP = A[B] + A[B], it is

ð1−DÞ2
p2
Að1−D2Þ2 +2pApBð1−DÞ2 + 2pAð1−pA −pBÞD2ð1−DÞ2:

Note that I assume the different replicates are independent, conditional on
the genotypes of all contributors (6).

I see from Fig. 2 that observing A[B] in the second replicate increases both
LRs when D is small but decreases them when D is large. In fact, when D is
very high, observing either A or A[B] in just one replicate yields LR > 1,
favoring Hp, whereas observing two such observations in independent
replicates gives LR < 1, against Hp. This is because X ≡ AA under Hd then
provides a better explanation of the replicate observations than Hp, because
homozygotes are much less likely to drop out than a heterozygote allele.

Additional Contributors. LRs, such as those in Eqs. 1 and 2, can be rewritten
more generally as

LR=
PðCSPjQ≡ABÞP
g∈ΓpgPðCSPjX≡gÞ; [3]

where Γ denotes the set of possible genotypes and pg denotes the population
fraction of genotype g. Eq. 3 makes explicit the requirement to sum over all
possible genotypes for the unprofiled contributor X. When there is an

additional unprofiled contributor U1, it is necessary to sum over all possibil-
ities for the unknown genotypes, multiplying each term by the genotype
probability:

LR=

X
g∈Γ

pgPðCSPjQ≡AB;U1≡gÞX
g1;g2∈Γ

pg1pg2PðCSPjX≡g1;U1≡g2Þ
: [4]

Each term in these sums follows the same well-established rules used for Q
and X above, now applied additionally to the current genotype for U1.

Multidose Dropout Model. Individuals contribute different amounts of DNA to
a mixed-source sample, and multiple individuals can have one or two copies
of a given allele. Thus, given Dð1Þ, the dropout probability for a unit “dose”
of DNA, it is necessary to evaluate DðkÞ, the dropout probability for dose k of
DNA. I adopt the model of Tvedebrink et al. (14), which can be written as

DðkÞ
1−DðkÞ= ðαskÞβ ; [5]

where s indicates the locus. I choose the scale by fixing the mean over loci of
αs at 1. I take k= 1 to correspond to a single heterozygote allele of a refer-
ence individual, usually X or Q.

The estimates obtained by Tvedebrink et al. (14) from experimental
nondegraded LTDNA profiled at the 10 loci of the SGM+ system imply an SD
for αs of 0.141. Because they may depend sensitively on the experimental
protocol used, I do not use the estimates of Tvedebrink et al. (14) directly;
instead, I estimate the αs under each hypothesis from the observed CSP. To
keep the estimates realistic, I impose a γ-distribution prior on the αs, with
mean = 1 and SD = 0.141 (a different SD may be appropriate, for example, in
highly degraded samples). For the global parameter β, I adopt here the es-

timate β̂= − 4:35 (14). Fig. 3 illustrates DðkÞ as a function of Dð1Þ for several
values of k, evaluated by substituting αβs =Dð1Þ=ð1−Dð1ÞÞ in Eq. 5. Note, for
example, that if Dð1Þ=0:5, Dð1:2Þ≈0:3 and Dð0:8Þ≈ 0:7; thus, a 20% change
in DNA dose can have a large impact on dropout probabilities.

The problem of calculating likelihoods for LTDNA profiles was not
addressed by Tvedebrink et al. (14); they validated their model by comparing
theoretical and empirical dropout rates. To achieve this, they estimated the
amount of DNA from each contributor using the heights of peaks due only
to that contributor over the whole profile. This is problematic for calculating
LTDNA likelihoods because it ignores information from allele peaks with
multiple contributors and requires alleles of individual contributors to be
distinguished, which is frequently not possible. Here, I directly specify the
likelihood for each replicate in terms of DðkÞ at every allelic position, with k
calculated according to the contributions of DNA and the genotypes of all
the hypothesized contributors. I thus use present/uncertain/absent in-
formation at every allelic position to provide information about amounts of
DNA, with the contributions from different contributors being estimated by
maximum likelihood.

Degradation Model. DNA degrades over time at a rate that depends on
temperature, humidity, and environmental exposure. In forensic DNA pro-
filing, degradation is manifested as higher dropout rates for alleles with large
fragment lengths. Ourmodel for the effect of degradation is based on that of
Tvedebrink et al. (15), who posited a geometrical distribution for the ef-
fective amount of DNA as a function of allele fragment length. Thus, the
average allele dose k from the ith contributor subject to dropout is modified
at an allele with fragment length l base pairs (centered to have mean zero)
according to k′= kð1+γiÞ−l , where γi > 0. Shorter fragments (l < 0) corre-
spond, in effect, to an enhanced allele dose, whereas longer fragments
generate a smaller effective allele dose. An STR allele consists of flanking
regions in addition to the tandem repeats; thus, the repeat number that
characterizes the allele is not a good proxy for fragment length, which can
be obtained for many DNA profiling systems at www.cstl.nist.gov/div831/
strbase/.

In the spirit of shrinkage regression methods, likeLTD incorporates a
weak penalty (exponential, mean = 0.02) on each γi . The effect of this penalty
is a slight tendency to shrink the parameter estimates toward zero, which
is usually negligible but avoids inflated values when there is very little
information.

Dropin. Dropin refers to an allele in the CSP that is not included in the ge-
notype of any hypothesized contributor, profiled or unprofiled. Dropin
alleles can arise from individuals contributing a very low level of DNA to the
sample, for example, via environmental contamination either in the laboratory
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or at the scene of recovery of the item. They can be generated from tiny
fragments of the DNAmolecule that persist for some time after the death and
decay of a cell. Forensic scientists often restrict “dropin” to laboratory-based
alleles, the rate of which can be measured by control runs and is usually
found to be low. However, I cannot usually distinguish laboratory-based
dropin from alleles arising at the crime scene (12).

Each dropin allele does come from an individual, but it may arise from very
few and possibly degraded cells. It is computationally inefficient to sum over
all possible genotypes, as in Eq. 4, for such low-level contributors; thus, I
allow the possibility of modeling dropin more simply as independent Ber-
noulli trials (6). Dropin is nondropout of an allele of a low-level contributor;
thus, I model the dropin probability as a constant (c) times the nondropout
rate for each replicate. As for the γi , I impose a weak penalty on c (expo-
nential, mean = 0.5) to discourage solutions with a large c, reflecting
background information that dropin is usually rare.

Parameter Estimation. To compute the LR, it is necessary to deal with the
“nuisance” parameters under each hypothesis. These are the Dð1Þ (one per
replicate), the αs (one per locus), possibly a dropin parameter c (see above),

the contributions of DNA relative to the reference individual, and the γi (one
for each contributor subject to dropout). The likeLTD program seeks to
maximize a penalized likelihood over these parameters, with penalties on αs,
γi , and c as described above. The penalties can be thought of as prior dis-
tributions, but I do not use a Bayesian approach because I maximize over
unknown parameters rather than integrate. The primary purpose of the
penalty is to discourage the maximization algorithm from exploring un-
realistic regions of the parameter space.

I use a simulated annealing algorithm (21) to maximize in an approximate
manner the penalized likelihood L. Starting with L computed at any set of
parameter values, the algorithm repeatedly takes a random step in parameter
space; compute the penalized likelihood L′; and accept the new state with
probability expððL′− LÞ=LtÞ, where t is the temperature, computed here as

t = ð1− i=nÞ3, with i and n being the current and total numbers of iterations.

Our goal is to obtain the maximized L under each hypothesis: bLp and cLd .
Estimates of the nuisance parameters are available as a byproduct. They may
not be precise, because there are some regions of the space of nuisance
parameters over which L varies little, particularly when both U1 and U2 are
included in the hypotheses being compared, because their genotypes can-
not easily be distinguished. However, the assessment of evidential weight uses
onlybLp=cLd and does not require precise estimates of the nuisance parameters.

Simulated annealing is a well-established algorithm with good properties,
but there is no guarantee that it will find the exact maximum value of L.
A larger n generally produces better approximations to the maximum; how-
ever, beyond a certain value, the improvement may be negligible. In SI Text,
section S2 and S3, I show that n = 5,000 provides good precision for hypotheses
involving both U1 and U2, as well as excellent precision when U2 is not
required.

Computing Times. Using n = 5,000, likeLTD requires a fewminutes if neither U1
nor U2 is included in the hypotheses being compared, a few hours for U1 only,
and several days for both U1 and U2. Other parameters affecting computing
times include the number of replicates and whether dropin is modeled. The
runs of likeLTD for the Hammer case and the Knox and Sollecito case reported
here required just over 10 min per locus on a standard desktop machine. A
much faster implementation of the algorithm is under development.
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S1. Introduction
The likeLTD (likelihoods for low-template DNA profiles) soft-
ware program is available under a GNU public license from
the author.
The file likeLTD-4-4.R (version 4.4) gives R functions for eval-

uating single-locus likelihoods for an observed crime scene profile
(CSP) of DNA, given the profiles of possible contributors of DNA
and a specified number of unprofiled contributors. This file is
called from likeLTD-4-4-Wrapper.R, which implements a simu-
lated annealing algorithm to maximize the product of single-locus
likelihoods, multiplied by penalty terms as discussed in the main
text, under both prosecution (Hp) and defense (Hd) hypotheses.
The ratio of these maximized, penalized likelihoods is the like-
lihood ratio (LR). The wrapper code must, in turn, be called
from an input file that specifies the CSP and reference profiles
and assigns key case-specific parameters, such as numbers of
unprofiled contributors and whether dropin is to be modeled.
Parameters that tend to be fixed across analyses, such as the
penalty hyperparameters and simulated annealing step sizes, are
set in the wrapper code.
I report here the performance of likeLTD in computing weight

of evidence (WoE)measured in bans [x bans means log10ðLRÞ= x].

S2. One-Contributor CSP with Dropout and Dropin
First, three CSPs were analyzed with increasing amounts of both
dropout and dropin introduced (Table S1). The contributors of
DNA to the sample under the prosecution and defense hy-
potheses are

H1
p :Q  and  H1

d :X;

where X is an unprofiled individual unrelated to the profiled, sus-
pected contributor, Q.

CSP1. Exactly the profile of Q (Table S1, row 1) appears in each
replicate of CSP1 (rows 2 and 3). There would be no need to use
likeLTD for this perfect single-contributor match, but I apply it
here to check that likeLTD works correctly in this setting. The
WoE (Table S2, row 1) is 11.45 bans. A naive application of the
product rule using the allele counts in Table S1 gives 12.9 bans
(Table S3); however, using the allele fractions in the bottom two
rows of the table, adjusted for coancestry ðFST = 0:02Þ and sampling
adjustment (adj = 1), reduces this to 11.43 bans, close to the
value generated by likeLTD. There is a small amount of error in
optimizing the likelihood under H1

d , whereas under H1
p , it is

evaluated exactly here, such that the WoE is overestimated by
about 0.02 bans, which is negligible relative to the reduction in
the WoE from sampling and FST adjustments (1.5 bans). In
practical settings there will be some error in estimation of like-
lihoods under both H1

p and H1
d .

The adjustment value is added to the database counts for the
alleles of Q to reduce the risk of understating the population
frequency, particularly for rare alleles. Except in the first column
of Table S3, I always use adj = 1. Balding (1) advocated adj = 2 in
the absence of an FST adjustment, but because FST has a big
impact on low-frequency alleles, adj = 1 is adequate when an
appropriate FST adjustment is used. The likeLTD program adjusts
for coancestry between X and Q by replacing each population
allele fraction estimate p (after sampling adjustment) with:

ð1−FSTÞ p=ð1+FSTÞ

for alleles not in the profile of Q,

ðFST + ð1−FSTÞ pÞ=ð1+FSTÞ

for a heterozygote allele of Q, and

ð2FST + ð1−FSTÞ pÞ=ð1+FSTÞ

for a homozygote allele of Q. I suggest that FST = 0:02 is a con-
servative value when Q is from a large, well-mixed population,
whereas FST = 0:03, or FST = 0:05 in extreme cases, may be more
appropriate for small, isolated, or heterogeneous populations,
such as many migrant populations. Further discussion and more
details of FST adjustments based on the multinomial-Dirichlet
distribution are available elsewhere (2).
Brother alternative.Repeating the one-contributor analysis but now
assuming that X is an unprofiled brother of Q gives 4.14 bans
(Table S4). The single-locus LRs computed by likeLTD follow
very closely the usual formula for a sibling (2), which in the
heterozygote (homozygote) case is:

LR=
4

1+ pa + pb + 2papb
 

 
4

ð1+ paÞ2
!
:

There is no explicit FST adjustment in this formula because the
allele fractions p have been adjusted as described above. This
provides a good approximation to the adjustment based on the
multinomial-Dirichlet distribution.
Assuming two contributors. If I wrongly guessed that there were two
contributors to CSP1, I could compare the hypotheses

H2
p :Q+U1  with  H2

d :X+U1;

where X and U1 denote unprofiled individuals who are unrelated
to each other and to Q. In this case, likeLTD correctly estimates
near 100% dropout for U1 under both hypotheses (Table S2, row 2)
and the WoE is almost unchanged from assuming one contribu-
tor. Similarly, when X is a brother of Q, the single-locus LRs and
overall WoE computed by likeLTD are almost identical to the
one-contributor case (Table S4).

CSP2.The two replicates of CSP2 differ from those of CSP1 due to
one dropin and two dropouts (Table S1, rows 4 and 5). The two
dropouts both affect loci with large fragment lengths, consistent
with the effects of DNA degradation. Because the dropin allele is
at a heterozygous locus where the two alleles of Q are replicated
and the two dropout alleles each appear in the other replicate, the
evidence implicating Q remains very powerful and the WoE is
only modestly reduced to 11.3 bans (Table S2, rows 5 and 6). The
dropout parameter estimates are similar over the four replicate/
hypothesis combinations. The γQ and γX estimates are, as ex-
pected, moderately large at 0.5%. Because the dropin allele must
have come from somebody, it is possible to analyze CSP2 as a
two-contributor profile, which implies very heavy dropout for the
second contributor, U1. I see from (Table S2, rows 7 and 8)
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that this analysis gives a slightly stronger WoE (11.4 bans), closer
to the WoE for CSP1. The dropout rates for U1 are, as expected,
very high, and γU1 is also high (0.8%) because the dropin allele is
at a short fragment length locus; thus, when attributed to U1, it
gives further support to the pattern of dropout increasing with
DNA fragment length.

CSP3. One further dropin and two more dropouts have been in-
troduced into CSP3 relative to CSP2 (Table S1, rows 7 and 8). The
extra dropin is at a locus for which Q is homozygous; thus, it must
be a dropin under H1

p but not under H1
d . The two additional

dropouts again both affect loci with large fragment lengths, and this
time, an allele of Q has dropped out in both replicates (FGA 24),
which has a substantial impact on the evidence implicating Q
as a contributor. Although the evidence remains powerful, the
overall WoE is now reduced by at least two bans compared with
CSP2 (Table S2, rows 9–12). CSP3b is affected by three drop-
outs, whereas CSP3a is affected by only one; consequently, the
dropout rate estimates are much higher for CSP3b than for CSP3a.
The difference between modeling CSP3 as a one-contributor
profile with two dropins and a two-contributor profile with sub-
stantial dropout for one of the contributors is now more im-
portant (0.7 bans). The two models differ in several respects, and
the dropin model can be regarded as a simple approximation that
reduces computation time.
Repeatability and simulated annealing search length. To investigate the
effectiveness of a different simulated annealing algorithm search
length n, I repeated both the one-contributor and two-contributor
analyses of CSP3 10 times for n = 1,000, n = 5,000, and n = 10,000
(Tables S5 and S6). Even for n = 1,000, the WoE is estimated
with SD < 0.05 ban, and for n = 5,000, the WoE computed by
likeLTD is almost exact for both one- and two-contributor
analyses. For these examples, the dropout and dropin parameters
are well estimated with n = 5,000.
Randomly selected suspect. To investigate the performance of
likeLTD when Q is not a contributor of DNA (thus, Hp is false),
100 profiles for Q were selected at random, according to pop-
ulation allele fraction estimates. Because random Q usually
cannot account for many of the replicated observed alleles in
CSP3, the prosecution case must be that there are two contrib-
utors of DNA, Q and U1, whereas the defense requires only X
with dropin. Comparing these hypotheses, the mean dropout
rates estimated for (noncontributor) Q were 90% in run 1 and
95% in run 2. Because of the high dropout rates, the WoE is
necessarily low in magnitude, with a mean of −1.1 and a range of
−3.6 to 1.7 bans (>0 in 19 of 100 simulations), compared with
a WoE around 9 bans for a true contributor Q.

S3. Two Unprofiled Contributors
CSP4. Table S8 (rows 1 and 2) presents results from a likeLTD
analysis of CSP4, which shows exactly the alleles of a two-person
mixture in both replicates, with no dropout or dropin. One of the
contributors is Q, and the other is treated as unknown (U1); thus,
the hypotheses compared areH2

p andH
2
d . The dropout rates, γQ and

γX , are correctly estimated to be close to zero. TheWoE is 7.2 bans,
reduced by over 4 bans from the case of a single-contributor CSP
matching Q (CSP1) because of the additional uncertainty cre-
ated by the masking effect of the alleles of U1.

CSP5.Table S8 (rows 3 and 4) introduces random 50% dropout for
the alleles of U1 not shared with Q. Because of the reduced
masking effect, theWoE is much higher than for CSP4, and is now
>9 bans. The γi is estimated at close to zero, which is correct
because the dropout rate was the same for all alleles. The dropout
rates for Q are correctly estimated as zero, whereas for X, there can
be less certainty because that individual’s genotype is unknown and
the rates are estimated at 1% and 2%. The actual numbers of
dropouts of the alleles of U1 are four in CSP5a and five in

CSP5b, and this is reflected in the dropout rate estimates of
around 54% for CSP5a and 72% for CSP5b. These estimates
cannot be precise because of the masking of the alleles of U1 by
those of Q.
Once again, 100 random profiles for Q were simulated, whereas

the individual whose profile is shown in Table S7 (row 1) was
treated as a profiled contributor K1. The prosecution hypothesis
was that the contributors of DNA were Q, K1, and U1, whereas
under the defense hypothesis, they were X and K1. The results
were broadly similar as for CSP3: The mean WoE against Q
was −1.0 bans, and all values were <0.1 bans this time.

CSP6.Here, the opposite scenario is considered of a random 50%
dropout of the alleles of Q not shared with U1. As expected, this
reduces the WoE, by 2 bans relative to CSP4. At locus FGA, both
alleles of Q have dropped out in both replicates; theWoE is−0.74
at this locus and is >0 at all other loci. There are again four
dropouts in CSP6a but five in CSP6b, which is reflected in dif-
ferent dropout rates over the two replicates. Under H2

d , both X
and U1 are unprofiled, and so are interchangeable. The dropout
rates for U1 are correctly estimated to be low under H2

p , whereas
under H2

d , it is X who is assigned a low dropout. In this case,
the dropouts were predominantly at the loci with large frag-
ment lengths (D2, D18, and FGA); thus, γQ is moderately high,
at 0.6%.

CSP7. A new difficulty is introduced in CSP7. In addition to 50%
dropout for the alleles of Q, 50% of the alleles of U1 generate
stutter peaks that have a nonnegligible probability of masking an
allele of Q. Each of these peaks is classified as “uncertain” for the
likeLTD analysis, irrespective of whether or not Q has an allele
at that position. This additional ambiguity in the CSPs reduces
the WoE further, to 4.7. Once again, the dropout and γi pa-
rameter estimates are broadly reasonable, noting that high pre-
cision is not possible here because of the masking effects of the
stutters and alleles of U1.

CSP8.Random 50% dropout affects the alleles of both Q and U1.
Once again, all the dropout and γi estimates are reasonable for
the two-contributor analysis, and the WoE is (coincidentally)
again 4.7. Even though the CSPs were created assuming two
contributors, there are now only three replicate/locus combina-
tions (out of 20) at which more than two alleles are observed.
Thus, it would be possible, although not recommended, to ana-
lyze this case assuming one contributor plus dropin. The results
(Table S8, bottom two rows) again show that this simplified
analysis gives a conservative result, with the WoE now being 2.7.

S4. Three Unprofiled Contributors
Three unprofiled contributors were generated using the profiles
from the Hammer case but omitting K2 and treating K1 as
unprofiled. The hypotheses compared were then

H3
p :Q+U1+U2  with  H3

d :X+U1+U2:

Under both H3
p andH3

d , a search length of n = 1,000 is reasonably
precise even when there are three contributors (Table S9). How-
ever, Tables S5, S6, and S9 all suggest a slight tendency to over-
state the WoE when n = 1,000, perhaps because there are more
parameters to be estimated under the defense hypothesis than
under the prosecution hypothesis.
There is no indication from these results that n = 5,000

overstates the WoE, and it gives excellent precision for one and
two contributors. For three contributors, an SD of about 0.25 bans
should usually be adequate, and if higher precision is required,
multiple searches can be run in parallel to reduce total compu-
tation time, with the largest values of the penalized likelihoods
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under each hypothesis used to form the reported LR. On my
desktop computer, with three unknown contributors, likeLTD
performs just less than 100 simulated annealing iterations per
hour; thus, n = 5,000 requires about 2 days.
The estimates of the nuisance parameters from the runs un-

derlying Table S9 are reasonably precise under H3
p but not under

H3
d . This is expected, because there are many different ways to

attribute the observed alleles to the three unprofiled contributors
and so many plausible combinations of parameter values. As
noted above, lack of precision in estimation of the nuisance pa-
rameters is unimportant in evaluating the WoE.

S5. Effects of Modifying the Dropout Model
The CSP and reference profiles for the Hammer case are given in
Table 2, where I report the WoE in favor of H′p over H′d of 10.6
bans for a “standard” analysis that excludes K2 and does not
include a dropin term. I also report there the results from an
analysis, including dropin, and from an experiment in which
some allele calls have been changed to uncertain. Here, I un-
dertake some further analyses of the Hammer case to investigate
the effects on the WoE of various modifications to the dropout
model, described near Eq. 5 in Materials and Methods. Some
results are given in Table S10 and are briefly discussed below.

Varying the Degradation Model. Degradation is manifested in
higher dropout rates for alleles with a large fragment length. In
the SGM+ system, this has the greatest effect for the alleles at
the D2, D18, and FGA loci. In Table 2, note a reduced number
of observed alleles relative to other loci at D18 and FGA, but not
at D2. To investigate the effect of modeling degradation in
likeLTD, I repeated the analysis with the degradation parameter
γi set to zero for every contributor i, which implies no change in
dropout probability with fragment length. This increased the

WoE by nearly 3 decibans at locus D2 relative to the standard
analysis but decreased it by 0.5 ban at D18.
In contrast to fixing the γi, I removed the penalty term (“free”

in Table S10). I also included K2 as a profiled possible con-
tributor. The estimates of γQ, γX , γK1, and γU1 were almost
identical to those given in Table 3 (rows 3 and 6), confirming that
the penalty term has little effect in the presence of good in-
formation. For K2, I have essentially no information, and γK2
was estimated at 0.000 and 0.000 with the penalty but at 0.001
and 0.003 without it, illustrating that the penalty can prevent
inflated γi estimates in the presence of little information.
The overall effect on the WoE of both the failure to model

degradation and the removal of the penalty term was close to zero
(Table S10).

Varying the Locus Adjustments. The locus adjustment parameter αs
allows for differences in dropout rates over loci, beyond the
dependence on fragment length that is captured with the deg-
radation model. In the standard analysis, likeLTD imposes a
γ-distribution penalty term with both parameters equal to 50,
implying a prior variance in αs of 0.14. I first fixed αs at one
(variance = 0), so that the dropout probability of an allele of
a given fragment length is the same for all loci. The overall WoE
was 10.5 bans. The converse change was to weaken the γ-penalty
by changing its prior SD from 0.14 to 0.32 (the two parameters of
the γ-distribution penalty changed from both = 50 to both = 10).
This reduced the overall WoE to 10.3 bans.

Varying the Power Parameter. I performed new power parameter (β)
analyses assigning β= − 3:97 and β= − 4:73. These values
represent 1 SD above and below the central estimate of −4.35
reported by Tvedebrink et al. (3). The overall WoE changes from
10.6 to 10.4 and 10.7, respectively.

1. Balding DJ (1995) Estimating products in forensic identification using DNA profiles. J
Am Stat Assoc 90(431):839–844.

2. Balding DJ (2005)Weight of Evidence for Forensic DNA Profiles (Wiley, Chichester, UK).

3. Tvedebrink T, Eriksen PS, Mogensen HS, Morling N (2009) Estimating the probability of
allelic drop-out of STR alleles in forensic genetics. Forensic Sci Int Genet 3(4):222–226.
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Table S1. One-contributor profiles

Locus D3 vWA D16 D2 D8 D21 D18 D19 TH01 FGA

Q 15, 16 15, 18 11, 11 17, 24 13, 13 29, 31 10, 16 13, 14 6, 9.3 22, 24
CSP1a 15, 16 15, 18 11 17, 24 13 29, 31 10, 16 13, 14 6, 9.3 22, 24
CSP1b 15, 16 15, 18 11 17, 24 13 29, 31 10, 16 13, 14 6, 9.3 22, 24
CSP2a 15, 16 15, 18 11 17, 24 13 29, 31 10, 16 13, 14 6, 9.3 22
CSP2b 15, 16, 17 15, 18 11 17 13 29, 31 10, 16 13, 14 6, 9.3 22, 24
CSP3a 15, 16 15, 18 11 17, 24 13, 15 29, 31 10, 16 13, 14 6, 9.3 22
CSP3b 15, 16, 17 15, 18 11 17 13 29, 31 16 13, 14 6, 9.3 22
Count* 116, 106 38, 80 130 90, 35 118 74, 28 2, 56 102, 133 77, 151 75, 47
Total† 396 384 418 388 384 384 384 396 384 384
Adjusted 0.302 0.117 0.341 0.244 0.338 0.206 0.027 0.268 0.214 0.209
Fraction‡ 0.278 0.221 0.108 0.0918 0.161 0.343 0.398 0.139

The crime scene DNA sample was profiled in duplicate (a and b), and the observed alleles in each replicate are
reported in separate rows for each of three hypothetical CSPs: CSP1 is a full single-contributor CSP, whereas CSP2
and CSP3 are the same profile with dropin and dropout introduced.
*Database counts for the alleles of Q.
†Total database allele count.
‡Allele fractions after sampling and FST adjustments (adj = 1, FST = 0.02).

Fig. S1. Electropherogram corresponding to the five loci of Table 1. The y axis shows peak height in relative fluorescence units, and the x axis shows fragment
length in base pairs.
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Table S2. WoE and some parameter estimates from likeLTD analyses of the Table S1 profiles

CSP, no. of contributors WoE, bans Hypothesis Dropout a Dropout b Degradation, γi Dropin

CSP1, 1 contributor, mean (SD) 11.45 (0.01) H1
d 0.00 (0.00) 0.00 (0.000) 0.000 (0.0001) 0.00 (0.001)

CSP1, 2 contributors, mean (SD) 11.45 (0.01) H2
d 0.00, 1.00 0.00, 1.00 0.000, 0.000 —

(0.000), (0.000) (0.000), (0.000) (0.0001), (0.0001) —

CSP2, 1 contributor 11.3 H1
p 0.03 0.03 0.005 0.07

H1
d 0.03 0.03 0.005 0.09

CSP2, 2 contributors 11.4 H2
p 0.05, 1.00 0.02, 0.99 0.005, 0.008 —

H2
d 0.06, 0.99 0.03, 0.99 0.004, 0.008 —

CSP3, 1 contributor 8.7 H1
p 0.03 0.12 0.005 0.15

H1
d 0.00 0.16 0.003 0.10

CSP3, 2 contributors 9.4 H2
p 0.06, 0.95 0.14, 0.98 0.004, 0.007 —

H2
d 0.05, 0.96 0.15 0.99 0.003, 0.009 —

Each CSP was analyzed twice, assuming one and then two contributors. The letters a and b denote the two replicate profiling runs.
For two contributors, both dropout and γi estimates are given (for Q and U1 under H2

p and for X and U1 under H2
d ). For CSP1, the mean

(SD) based on 10 likeLTD runs are shown for the WoE and parameter estimates under H1
d ; there are no unknown parameters under H1

p.
Results for CSP2 and CSP3 are from one likeLTD run.

Table S3. Overall WoE for CSP1

FST, % 0 0 1 2 3
Sampling adjustment 0 1 1 1 1
WoE, bans 12.9 12.6 11.9 11.43 11.0

The underlying allele counts are given in Table S1.

Table S4. Single-locus LRs and overall WoE for CSP1 when X, the alternative source of the DNA,
is a brother of Q

No. of contributors

Single-locus LR

WoE, bansD3 vWA D16 D2 D8 D21 D18 D19 TH01 FGA

1 2.29 2.88 2.22 2.85 2.23 3.00 3.34 2.23 2.24 2.84 4.14
2 2.29 2.88 2.22 2.85 2.24 3.00 3.35 2.23 2.24 2.85 4.14

Results are shown for both one- and two-contributor analyses. Note that the LR can never exceed 4.

Table S5. Mean (SD) of WoE, the maximized and penalized log-likelihoods, and dropout/dropin
parameters over 10 likeLTD analyses of rows 9 and 10 in Table S2 (CSP3, one-contributor)

n WoE, bans log10ðL̂Þ, mean Dropout CSP3a Dropout CSP3b γQ or γX Dropin

1,000 8.78 −3.73 (0.082) 0.03 (0.002) 0.12 (0.005) 0.005 (0.0003) 0.15 (0.007)
(0.046) −12.49 (0.044) 0.00 (0.000) 0.15 (0.013) 0.004 (0.0005) 0.10 (0.022)

5,000 8.73 −3.70 (0.001) 0.03 (0.001) 0.12 (0.002) 0.005 (0.001) 0.15 (0.004)
(0.003) −12.43 (0.003) 0.00 (0.000) 0.15 (0.006) 0.003 (0.0001) 0.09 (0.004)

10,000 8.72 −3.70 (0.001) 0.03 (0.001) 0.12 (0.003) 0.005 (0.0001) 0.15 (0.002)
(0.002) −12.43 (0.003) 0.00 (0.000) 0.15 (0.004) 0.003 (0.0001) 0.09 (0.005)

For each value of the simulated annealing algorithm search length n, the parameter estimates (SD) are given
under H1

p (top row) and H1
d (bottom row).
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Table S6. Mean (SD) of WoE, the maximized and penalized log-likelihoods, and dropout/dropin parameters over 10
likeLTD analyses of rows 11 and 12 in Table S2 (CSP3, two-contributor)

n WoE, bans log10ðL̂Þ, mean Dropout CSP3a Dropout CSP3b γQ or γX Contribution from U1

1,000 9.46 −2.96 (0.007) 0.12 (0.183) 0.14 (0.012) 0.004 (0.000) 0.25 (0.048)
(0.035) −12.42 (0.033) 0.06 (0.026) 0.15 (0.053) 0.003 (0.001) 0.25 (0.048)

5,000 9.43 −2.95 (0.002) 0.06 (0.002) 0.14 (0.003) 0.004 (0.000) 0.27 (0.003)
(0.001) −12.38 (0.001) 0.05 (0.003) 0.14 (0.004) 0.003 (0.000) 0.23 (0.005)

10,000 9.43 −2.95 (0.002) 0.06 (0.002) 0.14 (0.004) 0.004 (0.000) 0.26 (0.003)
(0.001) −12.38 (0.001) 0.05 (0.002) 0.14 (0.005) 0.003 (0.000) 0.23 (0.011)

The final column gives the estimated amount of DNA from U1 relative to Q or X, which is the parameter used by likeLTD to estimate
dropout rates for U1.

Table S7. Two-contributor profiles

Locus D3 vWA D16 D2 D8 D21 D18 D19 TH01 FGA

Q 15, 16 15, 18 11, 11 17, 24 13, 13 29, 31 10, 16 13, 14 6, 9.3 22, 24
CSP4a 15, 16, 17 15, 18 11, 13 17, 20, 24 10, 13 29, 31, 32.2 10, 11, 13, 16 13, 14 6, 8, 9.3 19, 22, 24, 25
CSP4b 15, 16, 17 15, 18 11, 13 17, 20, 24 10, 13 29, 31, 32.2 10, 11, 13, 16 13, 14 6, 8, 9.3 19, 22, 24, 25
CSP5a 15, 16 15, 18 11, 13 17, 24 10,13 29, 31, 32.2 10, 11, 16 13, 14 6, 8, 9.3 19, 22, 24
CSP5b 15, 16, 17 15, 18 11, 13 17, 24 13 29, 31, 32.2 10, 16 13, 14 6, 9.3 22, 24, 25
CSP6a 15, 16, 17 15, 18 11, 13 17, 20 10, 13 29, 31, 32.2 10, 11, 13 13, 14 6, 8, 9.3 19, 25
CSP6b 15, 16, 17 15, 18 11, 13 17, 20, 24 10, 13 29, 32.2 11, 13 13, 14 6, 8, 9.3 19, 25
CSP7a 15, 17 15, 18 11, 13 17, 20 10, 13 29, 31, 32.2 10, 11, 13 13, 14 6, 8, 9.3 19, 25

[16] [14], [17] [10] [16], [19] [12] — — [12] [5] [18], [24]
CSP7b 15, 17 15, 18 11, 13 17, 20, 24 10, 13 29, 32.2 11, 13 13, 14 6, 8, 9.3 19, 25

— [17] [12] [19] — [31.2] [10] [12] [5] [24]
CSP8a 15 15, 18 11 17, 20, 24 — 29, 31 10, 11, 16 13, 14 6, 8 19, 22
CSP8b 16, 17 15, 18 13 17, 20 10,13 31 10, 16 13 6, 8 22, 24, 25

The CSPs correspond to those of Q and one unprofiled contributor, modified by dropout and (for CSP7) stutter generating uncertain
allele calls (denoted by [ ]). The layout is similar to that of Table S1, except there are extra rows for CSP7 to show the uncertain
allele calls.

Table S8. WoE and parameter estimates for the CSPs of Table S7

CSP WoE, bans Hypothesis Dropout, a Dropout, b Degradation, γi Dropin

CSP4 7.2 H2
p 0.00, 0.00 0.00, 0.00 0.000, 0.000 —

H2
d 0.00, 0.05 0.00, 0.06 0.003, 0.002 —

CSP5 9.7 H2
p 0.00, 0.54 0.00, 0.71 0.000, 0.000 —

H2
d 0.01, 0.55 0.02, 0.73 0.000, 0.001 —

CSP6 5.1 H2
p 0.22, 0.03 0.30, 0.00 0.006, 0.000 —

H2
d 0.00, 0.72 0.00, 0.80 0.000, 0.000 —

CSP7 4.7 H2
p 0.26, 0.02 0.42, 0.03 0.003, 0.000 —

H2
d 0.06, 0.09 0.06, 0.10 0.000, 0.005 —

CSP8 4.7 H2
p 0.43, 0.70 0.41, 0.68 0.000, 0.000 —

2 contributors H2
d 0.35, 0.74 0.34, 0.73 0.000, 0.000 —

CSP8 2.7 H1
p 0.25 0.32 0.000 0.87

1 contributor H1
d 0.26 0.21 0.000 0.56

All analyses assume (correctly) two contributors, and their dropout and γi values are both shown, except for
the final rows, which incorrectly assume one contributor + dropin. The letters a and b refer to profiling
replicates.
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Table S9. Effect of simulated annealing search length

WoE, bans (SD)

n* Overall D3 vWA D16 D2 D8 D21 D18 D19 TH01 FGA

1,000 8.0 0.88 1.02 0.75 0.89 0.15 1.31 0.37 1.79 0.08 0.70
(0.40) (0.27) (0.05) (0.12) (0.19) (0.18) (0.26) (0.20) (0.06) (0.19) (0.18)

5,000 7.8 0.88 1.03 0.75 0.73 0.15 1.31 0.36 1.85 0.03 0.61
(0.24) (0.18) (0.02) (0.10) (0.12) (0.10) (0.14) (0.13) (0.03) (0.10) (0.09)

10,000 7.9 0.91 1.05 0.78 0.71 0.18 1.38 0.38 1.86 0.06 0.64
(0.03) (0.01) (0.01) (0.02) (0.03) (0.02) (0.01) (0.04) (0.02) (0.02) (0.02)

Summary of results from 10 likeLTD analyses for the three-contributor CSP (SI Text, section S4).
*The search length of the simulated annealing algorithm.

Table S10. Single-locus and overall WoE values for analyses of the Hammer case imposing various
modifications to the dropout model

WoE, bans

D3 vWA D16 D2 D8 D21 D18 D19 TH01 FGA Overall

Standard analysis (no dropin, K2 omitted)*
Mean 1.23 1.07 1.17 0.91 0.88 1.48 −0.59 2.49 0.70 1.27 10.6
SD (0.057) (0.017) (0.033) (0.084) (0.029) (0.14) (0.078) (0.034) (0.037) (0.089) (0.10)

Degradation parameter, γi
0 1.23 1.08 1.24 1.18 0.82 1.52 −1.08 2.44 0.67 1.20 10.6
Free† 1.21 1.04 1.18 0.84 0.87 1.55 −0.44 2.47 0.69 1.21 10.6

Locus adjustment, αs, prior variance
0 1.04 0.98 1.17 1.21 0.88 1.35 −0.37 2.40 0.78 1.03 10.5
0.32 1.13 1.15 1.00 0.68 0.87 1.54 −0.39 2.47 0.70 1.38 10.3

Power parameter, β
−4.73 1.04 1.00 1.20 1.17 0.87 1.37 −0.67 2.42 0.72 1.25 10.4
−3.97 1.07 1.00 1.22 1.18 0.89 1.40 −0.48 2.45 0.78 1.13 10.7

*These results, based on 25 likeLTD runs, are reproduced from Table 2 for ease of comparison. The other results
each correspond to a single likeLTD run.
†The exponential penalty has been removed.
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